CPUSET(7)                  Linux Programmer's Manual                 CPUSET(7)

       cpuset - confine processes to processor and memory node subsets

       The  cpuset  filesystem  is a pseudo-filesystem interface to the kernel
       cpuset mechanism, which is used to control the processor placement  and
       memory placement of processes.  It is commonly mounted at /dev/cpuset.

       On systems with kernels compiled with built in support for cpusets, all
       processes are attached to a cpuset, and cpusets are always present.  If
       a  system supports cpusets, then it will have the entry nodev cpuset in
       the file /proc/filesystems.  By mounting the cpuset filesystem (see the
       EXAMPLE  section below), the administrator can configure the cpusets on
       a system to control the processor and memory placement of processes  on
       that  system.   By  default, if the cpuset configuration on a system is
       not modified or if the cpuset filesystem is not even mounted, then  the
       cpuset  mechanism, though present, has no effect on the system's behav-

       A cpuset defines a list of CPUs and memory nodes.

       The CPUs of a system include all the logical processing units on  which
       a  process can execute, including, if present, multiple processor cores
       within a package and Hyper-Threads within  a  processor  core.   Memory
       nodes  include all distinct banks of main memory; small and SMP systems
       typically have just one memory node that contains all the system's main
       memory,  while  NUMA  (non-uniform memory access) systems have multiple
       memory nodes.

       Cpusets are  represented  as  directories  in  a  hierarchical  pseudo-
       filesystem, where the top directory in the hierarchy (/dev/cpuset) rep-
       resents the entire system (all online CPUs and memory  nodes)  and  any
       cpuset that is the child (descendant) of another parent cpuset contains
       a subset of that parent's CPUs and memory nodes.  The  directories  and
       files representing cpusets have normal filesystem permissions.

       Every  process  in the system belongs to exactly one cpuset.  A process
       is confined to run only on the CPUs in the cpuset it belongs to, and to
       allocate  memory  only  on  the  memory  nodes  in that cpuset.  When a
       process fork(2)s, the child process is placed in the same cpuset as its
       parent.   With  sufficient  privilege,  a process may be moved from one
       cpuset to another and the allowed CPUs and memory nodes of an  existing
       cpuset may be changed.

       When  the  system  begins  booting, a single cpuset is defined that in-
       cludes all CPUs and memory nodes on the system, and all  processes  are
       in that cpuset.  During the boot process, or later during normal system
       operation, other cpusets may be created, as subdirectories of this  top
       cpuset,  under  the  control of the system administrator, and processes
       may be placed in these other cpusets.

       Cpusets are integrated with the sched_setaffinity(2) scheduling  affin-
       ity  mechanism  and  the mbind(2) and set_mempolicy(2) memory-placement
       mechanisms in the kernel.  Neither of these mechanisms  let  a  process
       make  use of a CPU or memory node that is not allowed by that process's
       cpuset.  If changes to a process's cpuset placement conflict with these
       other  mechanisms,  then  cpuset placement is enforced even if it means
       overriding these other mechanisms.  The kernel accomplishes this  over-
       riding  by  silently restricting the CPUs and memory nodes requested by
       these other mechanisms to  those  allowed  by  the  invoking  process's
       cpuset.   This  can  result in these other calls returning an error, if
       for example, such a call ends up requesting an empty  set  of  CPUs  or
       memory  nodes,  after  that  request  is  restricted  to  the  invoking
       process's cpuset.

       Typically, a cpuset is used to manage the CPU and memory-node  confine-
       ment  for a set of cooperating processes such as a batch scheduler job,
       and these other mechanisms are used to manage the placement of individ-
       ual processes or memory regions within that set or job.

       Each  directory  below  /dev/cpuset  represents a cpuset and contains a
       fixed set of pseudo-files describing the state of that cpuset.

       New cpusets are created using the mkdir(2) system call or the  mkdir(1)
       command.   The  properties of a cpuset, such as its flags, allowed CPUs
       and memory nodes, and attached processes, are queried and  modified  by
       reading  or writing to the appropriate file in that cpuset's directory,
       as listed below.

       The pseudo-files in each cpuset  directory  are  automatically  created
       when the cpuset is created, as a result of the mkdir(2) invocation.  It
       is not possible to directly add or remove these pseudo-files.

       A cpuset directory that contains no child cpuset directories,  and  has
       no  attached  processes, can be removed using rmdir(2) or rmdir(1).  It
       is not necessary, or possible, to remove the  pseudo-files  inside  the
       directory before removing it.

       The pseudo-files in each cpuset directory are small text files that may
       be read and written using traditional shell utilities such  as  cat(1),
       and  echo(1),  or from a program by using file I/O library functions or
       system calls, such as open(2), read(2), write(2), and close(2).

       The pseudo-files in a cpuset directory represent internal kernel  state
       and do not have any persistent image on disk.  Each of these per-cpuset
       files is listed and described below.

       tasks  List of the process IDs (PIDs) of the processes in that  cpuset.
              The list is formatted as a series of ASCII decimal numbers, each
              followed by a newline.  A process may be added to a cpuset  (au-
              tomatically  removing  it  from  the cpuset that previously con-
              tained it) by writing its PID to that cpuset's tasks file  (with
              or without a trailing newline).

              Warning:  only  one  PID  may  be written to the tasks file at a
              time.  If a string is written that contains more than  one  PID,
              only the first one will be used.

              Flag  (0  or  1).   If set (1), that cpuset will receive special
              handling after it is released,  that  is,  after  all  processes
              cease  using  it  (i.e.,  terminate  or are moved to a different
              cpuset) and all child cpuset directories have been removed.  See
              the Notify On Release section, below.

              List  of  the physical numbers of the CPUs on which processes in
              that cpuset are allowed to execute.  See List Format below for a
              description of the format of cpus.

              The  CPUs  allowed  to  a cpuset may be changed by writing a new
              list to its cpus file.

              Flag (0 or 1).  If set (1), the cpuset has exclusive use of  its
              CPUs  (no  sibling  or  cousin cpuset may overlap CPUs).  By de-
              fault, this is off (0).  Newly created  cpusets  also  initially
              default this to off (0).

              Two  cpusets  are  sibling cpusets if they share the same parent
              cpuset in the /dev/cpuset hierarchy.   Two  cpusets  are  cousin
              cpusets  if neither is the ancestor of the other.  Regardless of
              the cpu_exclusive setting, if one cpuset is the ancestor of  an-
              other,  and  if  both  of these cpusets have nonempty cpus, then
              their cpus must overlap, because the cpus of any cpuset are  al-
              ways a subset of the cpus of its parent cpuset.

              List  of  memory nodes on which processes in this cpuset are al-
              lowed to allocate memory.  See List Format below for a  descrip-
              tion of the format of mems.

              Flag  (0 or 1).  If set (1), the cpuset has exclusive use of its
              memory nodes (no sibling or cousin may overlap).   Also  if  set
              (1),  the  cpuset is a Hardwall cpuset (see below).  By default,
              this is off (0).  Newly created cpusets also  initially  default
              this to off (0).

              Regardless  of  the  mem_exclusive setting, if one cpuset is the
              ancestor of another, then their memory nodes must  overlap,  be-
              cause  the memory nodes of any cpuset are always a subset of the
              memory nodes of that cpuset's parent cpuset.

       cpuset.mem_hardwall (since Linux 2.6.26)
              Flag (0 or 1).  If set (1), the cpuset is a Hardwall cpuset (see
              below).  Unlike mem_exclusive, there is no constraint on whether
              cpusets marked mem_hardwall may have  overlapping  memory  nodes
              with  sibling  or  cousin cpusets.  By default, this is off (0).
              Newly created cpusets also initially default this to off (0).

       cpuset.memory_migrate (since Linux 2.6.16)
              Flag (0 or 1).  If set (1), then memory  migration  is  enabled.
              By  default, this is off (0).  See the Memory Migration section,

       cpuset.memory_pressure (since Linux 2.6.16)
              A measure of how much memory  pressure  the  processes  in  this
              cpuset  are  causing.   See  the Memory Pressure section, below.
              Unless memory_pressure_enabled is enabled, always has value zero
              (0).  This file is read-only.  See the WARNINGS section, below.

       cpuset.memory_pressure_enabled (since Linux 2.6.16)
              Flag  (0  or  1).  This file is present only in the root cpuset,
              normally /dev/cpuset.  If set (1), the memory_pressure  calcula-
              tions  are  enabled  for all cpusets in the system.  By default,
              this is off (0).  See the Memory Pressure section, below.

       cpuset.memory_spread_page (since Linux 2.6.17)
              Flag (0 or 1).  If set (1),  pages  in  the  kernel  page  cache
              (filesystem buffers) are uniformly spread across the cpuset.  By
              default, this is off (0) in the top cpuset, and  inherited  from
              the  parent  cpuset  in  newly  created cpusets.  See the Memory
              Spread section, below.

       cpuset.memory_spread_slab (since Linux 2.6.17)
              Flag (0 or 1).  If set (1), the kernel slab caches for file  I/O
              (directory and inode structures) are uniformly spread across the
              cpuset.  By defaultBy default, is off (0) in the top cpuset, and
              inherited  from the parent cpuset in newly created cpusets.  See
              the Memory Spread section, below.

       cpuset.sched_load_balance (since Linux 2.6.24)
              Flag (0 or 1).  If set (1, the default) the kernel will automat-
              ically  load  balance  processes in that cpuset over the allowed
              CPUs in that cpuset.  If cleared (0) the kernel will avoid  load
              balancing  processes  in  this  cpuset, unless some other cpuset
              with overlapping CPUs has its sched_load_balance flag set.   See
              Scheduler Load Balancing, below, for further details.

       cpuset.sched_relax_domain_level (since Linux 2.6.26)
              Integer,  between  -1 and a small positive value.  The sched_re-
              lax_domain_level controls the width of the range  of  CPUs  over
              which  the  kernel  scheduler  performs immediate rebalancing of
              runnable tasks across CPUs.  If sched_load_balance is  disabled,
              then the setting of sched_relax_domain_level does not matter, as
              no such load balancing is done.  If  sched_load_balance  is  en-
              abled,   then  the  higher  the  value  of  the  sched_relax_do-
              main_level, the wider the range of  CPUs  over  which  immediate
              load  balancing is attempted.  See Scheduler Relax Domain Level,
              below, for further details.

       In  addition  to  the  above  pseudo-files  in  each  directory   below
       /dev/cpuset,  each  process has a pseudo-file, /proc/<pid>/cpuset, that
       displays the path of the process's cpuset  directory  relative  to  the
       root of the cpuset filesystem.

       Also the /proc/<pid>/status file for each process has four added lines,
       displaying the process's Cpus_allowed (on which CPUs it may  be  sched-
       uled) and Mems_allowed (on which memory nodes it may obtain memory), in
       the two formats Mask Format and List Format (see below) as shown in the
       following example:

           Cpus_allowed:   ffffffff,ffffffff,ffffffff,ffffffff
           Cpus_allowed_list:     0-127
           Mems_allowed:   ffffffff,ffffffff
           Mems_allowed_list:     0-63

       The  "allowed"  fields  were  added in Linux 2.6.24; the "allowed_list"
       fields were added in Linux 2.6.26.

       In addition to controlling which cpus and mems a process is allowed  to
       use, cpusets provide the following extended capabilities.

   Exclusive cpusets
       If  a cpuset is marked cpu_exclusive or mem_exclusive, no other cpuset,
       other than a direct ancestor or descendant, may share any of  the  same
       CPUs or memory nodes.

       A  cpuset that is mem_exclusive restricts kernel allocations for buffer
       cache pages and other internal kernel data pages commonly shared by the
       kernel  across  multiple  users.  All cpusets, whether mem_exclusive or
       not, restrict allocations of memory for user space.  This enables  con-
       figuring  a  system  so  that several independent jobs can share common
       kernel data, while isolating each job's  user  allocation  in  its  own
       cpuset.  To do this, construct a large mem_exclusive cpuset to hold all
       the jobs, and construct child, non-mem_exclusive cpusets for each indi-
       vidual  job.   Only  a  small amount of kernel memory, such as requests
       from interrupt handlers, is allowed to be placed on memory  nodes  out-
       side even a mem_exclusive cpuset.

       A  cpuset  that  has  mem_exclusive  or  mem_hardwall set is a hardwall
       cpuset.  A hardwall cpuset restricts kernel allocations for page,  buf-
       fer,  and  other  data  commonly  shared  by the kernel across multiple
       users.  All cpusets, whether hardwall or not, restrict  allocations  of
       memory for user space.

       This  enables configuring a system so that several independent jobs can
       share common kernel data, such as  filesystem  pages,  while  isolating
       each  job's user allocation in its own cpuset.  To do this, construct a
       large hardwall cpuset to hold all the jobs, and construct child cpusets
       for each individual job which are not hardwall cpusets.

       Only  a  small amount of kernel memory, such as requests from interrupt
       handlers, is allowed to be taken outside even a hardwall cpuset.

   Notify on release
       If the notify_on_release flag is enabled (1) in a cpuset, then whenever
       the  last process in the cpuset leaves (exits or attaches to some other
       cpuset) and the last child cpuset of that cpuset is removed, the kernel
       will run the command /sbin/cpuset_release_agent, supplying the pathname
       (relative to the mount point of the cpuset filesystem) of the abandoned
       cpuset.  This enables automatic removal of abandoned cpusets.

       The  default  value  of  notify_on_release in the root cpuset at system
       boot is disabled (0).  The default value of other cpusets  at  creation
       is the current value of their parent's notify_on_release setting.

       The  command  /sbin/cpuset_release_agent  is  invoked,  with  the  name
       (/dev/cpuset relative path) of the to-be-released cpuset in argv[1].

       The usual contents of the command /sbin/cpuset_release_agent is  simply
       the shell script:

           rmdir /dev/cpuset/$1

       As with other flag values below, this flag can be changed by writing an
       ASCII number 0 or 1 (with optional trailing newline) into the file,  to
       clear or set the flag, respectively.

   Memory pressure
       The  memory_pressure  of  a cpuset provides a simple per-cpuset running
       average of the rate that the processes in a cpuset  are  attempting  to
       free  up in-use memory on the nodes of the cpuset to satisfy additional
       memory requests.

       This enables batch managers that are monitoring jobs running  in  dedi-
       cated  cpusets to efficiently detect what level of memory pressure that
       job is causing.

       This is useful both on tightly managed systems running a  wide  mix  of
       submitted jobs, which may choose to terminate or reprioritize jobs that
       are trying to use more memory than allowed on the nodes assigned  them,
       and  with  tightly coupled, long-running, massively parallel scientific
       computing jobs that will dramatically fail to meet required performance
       goals if they start to use more memory than allowed to them.

       This  mechanism provides a very economical way for the batch manager to
       monitor a cpuset for signs of memory pressure.  It's up  to  the  batch
       manager  or other user code to decide what action to take if it detects
       signs of memory pressure.

       Unless memory pressure calculation is enabled by  setting  the  pseudo-
       file /dev/cpuset/cpuset.memory_pressure_enabled, it is not computed for
       any cpuset, and reads from any memory_pressure always return  zero,  as
       represented  by  the ASCII string "0\n".  See the WARNINGS section, be-

       A per-cpuset, running average is employed for the following reasons:

       *  Because this meter is per-cpuset rather than per-process or per vir-
          tual  memory  region,  the  system load imposed by a batch scheduler
          monitoring this metric is sharply reduced on large systems,  because
          a scan of the tasklist can be avoided on each set of queries.

       *  Because  this meter is a running average rather than an accumulating
          counter, a batch scheduler can detect memory pressure with a  single
          read,  instead of having to read and accumulate results for a period
          of time.

       *  Because this meter is per-cpuset rather than per-process, the  batch
          scheduler  can  obtain  the  key  information--memory  pressure in a
          cpuset--with a single read, rather than having to query and  accumu-
          late results over all the (dynamically changing) set of processes in
          the cpuset.

       The memory_pressure of a cpuset is calculated using a per-cpuset simple
       digital  filter  that is kept within the kernel.  For each cpuset, this
       filter tracks the recent rate  at  which  processes  attached  to  that
       cpuset enter the kernel direct reclaim code.

       The  kernel  direct  reclaim  code is entered whenever a process has to
       satisfy a memory page request by first finding some other page  to  re-
       purpose,  due  to  lack  of  any  readily available already free pages.
       Dirty filesystem pages are repurposed by first writing  them  to  disk.
       Unmodified  filesystem  buffer  pages are repurposed by simply dropping
       them, though if that page is needed again, it will have  to  be  reread
       from disk.

       The cpuset.memory_pressure file provides an integer number representing
       the recent (half-life of 10 seconds) rate of entries to the direct  re-
       claim  code  caused  by any process in the cpuset, in units of reclaims
       attempted per second, times 1000.

   Memory spread
       There are two Boolean flag files per cpuset that control where the ker-
       nel  allocates  pages  for the filesystem buffers and related in-kernel
       data  structures.   They  are  called   cpuset.memory_spread_page   and

       If  the  per-cpuset Boolean flag file cpuset.memory_spread_page is set,
       then the kernel will spread the filesystem buffers (page cache)  evenly
       over all the nodes that the faulting process is allowed to use, instead
       of preferring to put those pages on the node where the process is  run-

       If  the  per-cpuset Boolean flag file cpuset.memory_spread_slab is set,
       then the kernel will spread some filesystem-related slab  caches,  such
       as  those  for  inodes and directory entries, evenly over all the nodes
       that the faulting process is allowed to use, instead of  preferring  to
       put those pages on the node where the process is running.

       The  setting  of  these  flags  does  not  affect the data segment (see
       brk(2)) or stack segment pages of a process.

       By default, both kinds of memory spreading are off and the kernel  pre-
       fers to allocate memory pages on the node local to where the requesting
       process is running.  If that node is not allowed by the process's  NUMA
       memory policy or cpuset configuration or if there are insufficient free
       memory pages on that node, then the kernel looks for the  nearest  node
       that is allowed and has sufficient free memory.

       When  new  cpusets are created, they inherit the memory spread settings
       of their parent.

       Setting memory spreading causes allocations for the  affected  page  or
       slab  caches  to  ignore the process's NUMA memory policy and be spread
       instead.  However, the effect of  these  changes  in  memory  placement
       caused by cpuset-specified memory spreading is hidden from the mbind(2)
       or set_mempolicy(2) calls.  These two NUMA memory policy  calls  always
       appear  to  behave as if no cpuset-specified memory spreading is in ef-
       fect, even if it is.  If cpuset memory spreading is subsequently turned
       off,  the  NUMA memory policy most recently specified by these calls is
       automatically reapplied.

       Both cpuset.memory_spread_page and cpuset.memory_spread_slab are  Bool-
       ean flag files.  By default, they contain "0", meaning that the feature
       is off for that cpuset.  If a "1" is written to that file,  that  turns
       the named feature on.

       Cpuset-specified  memory  spreading  behaves similarly to what is known
       (in other contexts) as round-robin or interleave memory placement.

       Cpuset-specified memory spreading can provide  substantial  performance
       improvements for jobs that:

       a) need  to  place  thread-local data on memory nodes close to the CPUs
          which are running the threads that most frequently access that data;
          but also

       b) need  to  access  large  filesystem data sets that must to be spread
          across the several nodes in the job's cpuset in order to fit.

       Without this policy, the memory allocation  across  the  nodes  in  the
       job's  cpuset  can  become  very uneven, especially for jobs that might
       have just a single thread initializing or reading in the data set.

   Memory migration
       Normally, under the default  setting  (disabled)  of  cpuset.memory_mi-
       grate, once a page is allocated (given a physical page of main memory),
       then that page stays on whatever node it was allocated, so long  as  it
       remains  allocated,  even  if the cpuset's memory-placement policy mems
       subsequently changes.

       When memory migration is enabled in a cpuset, if the  mems  setting  of
       the  cpuset  is  changed, then any memory page in use by any process in
       the cpuset that is on a memory node that is no longer allowed  will  be
       migrated to a memory node that is allowed.

       Furthermore,  if  a  process is moved into a cpuset with memory_migrate
       enabled, any memory pages it uses that were on memory nodes allowed  in
       its  previous cpuset, but which are not allowed in its new cpuset, will
       be migrated to a memory node allowed in the new cpuset.

       The relative placement of a migrated page within  the  cpuset  is  pre-
       served  during these migration operations if possible.  For example, if
       the page was on the second valid node of the  prior  cpuset,  then  the
       page will be placed on the second valid node of the new cpuset, if pos-

   Scheduler load balancing
       The kernel scheduler automatically load balances processes.  If one CPU
       is  underutilized,  the  kernel  will  look for processes on other more
       overloaded CPUs and move those  processes  to  the  underutilized  CPU,
       within  the  constraints  of  such  placement mechanisms as cpusets and

       The algorithmic cost of load balancing and its  impact  on  key  shared
       kernel  data  structures  such  as the process list increases more than
       linearly with the number of CPUs being balanced.  For example, it costs
       more  to load balance across one large set of CPUs than it does to bal-
       ance across two smaller sets of CPUs, each of  half  the  size  of  the
       larger set.  (The precise relationship between the number of CPUs being
       balanced and the cost of load balancing depends on  implementation  de-
       tails  of the kernel process scheduler, which is subject to change over
       time, as improved kernel scheduler algorithms are implemented.)

       The per-cpuset flag sched_load_balance provides a mechanism to suppress
       this automatic scheduler load balancing in cases where it is not needed
       and suppressing it would have worthwhile performance benefits.

       By default, load balancing is done across all CPUs, except those marked
       isolated  using the kernel boot time "isolcpus=" argument.  (See Sched-
       uler Relax Domain Level, below, to change this default.)

       This default load balancing across all CPUs is not well suited  to  the
       following two situations:

       *  On  large systems, load balancing across many CPUs is expensive.  If
          the system is managed using cpusets to  place  independent  jobs  on
          separate sets of CPUs, full load balancing is unnecessary.

       *  Systems  supporting  real-time  on some CPUs need to minimize system
          overhead on those CPUs, including avoiding process load balancing if
          that is not needed.

       When  the  per-cpuset  flag  sched_load_balance is enabled (the default
       setting), it requests load  balancing  across  all  the  CPUs  in  that
       cpuset's  allowed CPUs, ensuring that load balancing can move a process
       (not otherwise pinned, as by sched_setaffinity(2)) from any CPU in that
       cpuset to any other.

       When  the  per-cpuset  flag  sched_load_balance  is  disabled, then the
       scheduler will avoid load balancing across the CPUs in that cpuset, ex-
       cept  in  so  far  as  is necessary because some overlapping cpuset has
       sched_load_balance enabled.

       So, for example, if the top cpuset has the flag sched_load_balance  en-
       abled,  then  the  scheduler will load balance across all CPUs, and the
       setting of the sched_load_balance flag in other cpusets has no  effect,
       as we're already fully load balancing.

       Therefore  in  the  above  two  situations, the flag sched_load_balance
       should be disabled in the top cpuset, and only  some  of  the  smaller,
       child cpusets would have this flag enabled.

       When doing this, you don't usually want to leave any unpinned processes
       in the top cpuset that might use nontrivial amounts  of  CPU,  as  such
       processes  may  be artificially constrained to some subset of CPUs, de-
       pending on the particulars of this flag setting in descendant  cpusets.
       Even  if  such a process could use spare CPU cycles in some other CPUs,
       the kernel scheduler might not consider the possibility of load balanc-
       ing that process to the underused CPU.

       Of course, processes pinned to a particular CPU can be left in a cpuset
       that disables sched_load_balance as those processes aren't  going  any-
       where else anyway.

   Scheduler relax domain level
       The  kernel  scheduler performs immediate load balancing whenever a CPU
       becomes free or another task becomes  runnable.   This  load  balancing
       works  to  ensure  that  as many CPUs as possible are usefully employed
       running tasks.  The kernel also performs periodic  load  balancing  off
       the  software  clock  described  in  time(7).  The setting of sched_re-
       lax_domain_level applies only to immediate load balancing.   Regardless
       of the sched_relax_domain_level setting, periodic load balancing is at-
       tempted over all CPUs (unless disabled by turning  off  sched_load_bal-
       ance.)   In any case, of course, tasks will be scheduled to run only on
       CPUs allowed by their cpuset, as modified by sched_setaffinity(2)  sys-
       tem calls.

       On  small  systems,  such as those with just a few CPUs, immediate load
       balancing is useful to improve system  interactivity  and  to  minimize
       wasteful  idle  CPU cycles.  But on large systems, attempting immediate
       load balancing across a large number of CPUs can be more costly than it
       is  worth,  depending  on the particular performance characteristics of
       the job mix and the hardware.

       The exact meaning  of  the  small  integer  values  of  sched_relax_do-
       main_level will depend on internal implementation details of the kernel
       scheduler code and on the non-uniform  architecture  of  the  hardware.
       Both of these will evolve over time and vary by system architecture and
       kernel version.

       As of this writing,  when  this  capability  was  introduced  in  Linux
       2.6.26,  on  certain  popular  architectures,  the  positive  values of
       sched_relax_domain_level have the following meanings.

       (1) Perform immediate load balancing across  Hyper-Thread  siblings  on
           the same core.
       (2) Perform  immediate  load  balancing  across other cores in the same
       (3) Perform immediate load balancing across other CPUs on the same node
           or blade.
       (4) Perform  immediate  load balancing across over several (implementa-
           tion detail) nodes [On NUMA systems].
       (5) Perform immediate load balancing across over all CPUs in system [On
           NUMA systems].

       The  sched_relax_domain_level value of zero (0) always means don't per-
       form immediate load balancing, hence that load balancing is  done  only
       periodically,  not  immediately when a CPU becomes available or another
       task becomes runnable.

       The sched_relax_domain_level value of minus one (-1) always  means  use
       the  system default value.  The system default value can vary by archi-
       tecture and kernel version.  This system default value can  be  changed
       by kernel boot-time "relax_domain_level=" argument.

       In  the  case  of  multiple  overlapping cpusets which have conflicting
       sched_relax_domain_level values, then the highest such value applies to
       all  CPUs  in any of the overlapping cpusets.  In such cases, the value
       minus one (-1) is the lowest value, overridden by any other value,  and
       the value zero (0) is the next lowest value.

       The  following  formats  are  used to represent sets of CPUs and memory

   Mask format
       The Mask Format is used to represent CPU and memory-node bit  masks  in
       the /proc/<pid>/status file.

       This format displays each 32-bit word in hexadecimal (using ASCII char-
       acters "0" - "9" and "a" - "f"); words are filled with  leading  zeros,
       if required.  For masks longer than one word, a comma separator is used
       between words.  Words are displayed in big-endian order, which has  the
       most  significant  bit first.  The hex digits within a word are also in
       big-endian order.

       The number of 32-bit words displayed is the minimum  number  needed  to
       display all bits of the bit mask, based on the size of the bit mask.

       Examples of the Mask Format:

           00000001                        # just bit 0 set
           40000000,00000000,00000000      # just bit 94 set
           00000001,00000000,00000000      # just bit 64 set
           000000ff,00000000               # bits 32-39 set
           00000000,000e3862               # 1,5,6,11-13,17-19 set

       A mask with bits 0, 1, 2, 4, 8, 16, 32, and 64 set displays as:


       The  first  "1" is for bit 64, the second for bit 32, the third for bit
       16, the fourth for bit 8, the fifth for bit 4, and the "7" is for  bits
       2, 1, and 0.

   List format
       The  List  Format for cpus and mems is a comma-separated list of CPU or
       memory-node numbers and ranges of numbers, in ASCII decimal.

       Examples of the List Format:

           0-4,9           # bits 0, 1, 2, 3, 4, and 9 set
           0-2,7,12-14     # bits 0, 1, 2, 7, 12, 13, and 14 set

       The following rules apply to each cpuset:

       *  Its CPUs and memory nodes must be a (possibly equal) subset  of  its

       *  It can be marked cpu_exclusive only if its parent is.

       *  It can be marked mem_exclusive only if its parent is.

       *  If it is cpu_exclusive, its CPUs may not overlap any sibling.

       *  If it is memory_exclusive, its memory nodes may not overlap any sib-

       The permissions of a cpuset are determined by the  permissions  of  the
       directories and pseudo-files in the cpuset filesystem, normally mounted
       at /dev/cpuset.

       For instance, a process can put itself in some other cpuset  (than  its
       current  one) if it can write the tasks file for that cpuset.  This re-
       quires execute permission on the  encompassing  directories  and  write
       permission on the tasks file.

       An  additional  constraint  is  applied to requests to place some other
       process in a cpuset.  One process may not attach another  to  a  cpuset
       unless  it  would  have  permission  to send that process a signal (see

       A process may create a child cpuset if it can access and write the par-
       ent  cpuset  directory.   It  can  modify the CPUs or memory nodes in a
       cpuset if it can access that cpuset's directory (execute permissions on
       the each of the parent directories) and write the corresponding cpus or
       mems file.

       There is one minor difference between the manner in which these permis-
       sions are evaluated and the manner in which normal filesystem operation
       permissions are evaluated.  The kernel  interprets  relative  pathnames
       starting  at a process's current working directory.  Even if one is op-
       erating on a cpuset file, relative pathnames are  interpreted  relative
       to  the  process's  current  working  directory,  not  relative  to the
       process's current cpuset.  The only ways that cpuset paths relative  to
       a process's current cpuset can be used are if either the process's cur-
       rent working directory is its cpuset (it first did a cd or chdir(2)  to
       its cpuset directory beneath /dev/cpuset, which is a bit unusual) or if
       some user code converts the relative cpuset path to a  full  filesystem

       In theory, this means that user code should specify cpusets using abso-
       lute pathnames, which requires knowing the mount point  of  the  cpuset
       filesystem  (usually,  but not necessarily, /dev/cpuset).  In practice,
       all user level code that this author is aware of simply assumes that if
       the  cpuset  filesystem  is mounted, then it is mounted at /dev/cpuset.
       Furthermore, it is common practice for carefully written user  code  to
       verify  the  presence  of the pseudo-file /dev/cpuset/tasks in order to
       verify that the cpuset pseudo-filesystem is currently mounted.

   Enabling memory_pressure
       By default, the per-cpuset file cpuset.memory_pressure always  contains
       zero (0).  Unless this feature is enabled by writing "1" to the pseudo-
       file /dev/cpuset/cpuset.memory_pressure_enabled, the  kernel  does  not
       compute per-cpuset memory_pressure.

   Using the echo command
       When using the echo command at the shell prompt to change the values of
       cpuset files, beware that the built-in echo command in some shells does
       not  display  an  error message if the write(2) system call fails.  For
       example, if the command:

           echo 19 > cpuset.mems

       failed because memory node 19 was not allowed (perhaps the current sys-
       tem  does  not  have a memory node 19), then the echo command might not
       display any error.  It is better to use the /bin/echo external  command
       to  change  cpuset file settings, as this command will display write(2)
       errors, as in the example:

           /bin/echo 19 > cpuset.mems
           /bin/echo: write error: Invalid argument

   Memory placement
       Not all allocations of system memory are constrained  by  cpusets,  for
       the following reasons.

       If  hot-plug functionality is used to remove all the CPUs that are cur-
       rently assigned to a cpuset, then the kernel will automatically  update
       the  cpus_allowed  of  all processes attached to CPUs in that cpuset to
       allow all CPUs.  When memory hot-plug functionality for removing memory
       nodes  is  available, a similar exception is expected to apply there as
       well.  In general, the kernel  prefers  to  violate  cpuset  placement,
       rather  than  starving  a  process that has had all its allowed CPUs or
       memory nodes taken offline.  User code should  reconfigure  cpusets  to
       refer  only  to online CPUs and memory nodes when using hot-plug to add
       or remove such resources.

       A few  kernel-critical,  internal  memory-allocation  requests,  marked
       GFP_ATOMIC,  must  be  satisfied immediately.  The kernel may drop some
       request or malfunction if one of these allocations fail.  If such a re-
       quest  cannot be satisfied within the current process's cpuset, then we
       relax the cpuset, and look for memory anywhere we can  find  it.   It's
       better to violate the cpuset than stress the kernel.

       Allocations  of  memory requested by kernel drivers while processing an
       interrupt lack any relevant process context, and are  not  confined  by

   Renaming cpusets
       You  can  use the rename(2) system call to rename cpusets.  Only simple
       renaming is supported; that is, changing the name of a cpuset directory
       is  permitted, but moving a directory into a different directory is not

       The Linux kernel implementation of cpusets sets errno  to  specify  the
       reason for a failed system call affecting cpusets.

       The  possible  errno  settings  and  their meaning when set on a failed
       cpuset call are as listed below.

       E2BIG  Attempted a write(2) on a special  cpuset  file  with  a  length
              larger  than some kernel-determined upper limit on the length of
              such writes.

       EACCES Attempted to write(2) the process ID (PID) of  a  process  to  a
              cpuset  tasks  file  when  one  lacks  permission  to  move that

       EACCES Attempted to add, using write(2), a CPU  or  memory  node  to  a
              cpuset, when that CPU or memory node was not already in its par-

       EACCES Attempted  to  set,  using  write(2),  cpuset.cpu_exclusive   or
              cpuset.mem_exclusive  on  a  cpuset  whose parent lacks the same

       EACCES Attempted to write(2) a cpuset.memory_pressure file.

       EACCES Attempted to create a file in a cpuset directory.

       EBUSY  Attempted to remove, using rmdir(2), a cpuset with attached pro-

       EBUSY  Attempted  to  remove,  using  rmdir(2),  a  cpuset  with  child

       EBUSY  Attempted to remove a CPU or memory node from a cpuset  that  is
              also in a child of that cpuset.

       EEXIST Attempted  to  create, using mkdir(2), a cpuset that already ex-

       EEXIST Attempted to rename(2) a cpuset to a name that already exists.

       EFAULT Attempted to read(2) or write(2) a cpuset file  using  a  buffer
              that is outside the writing processes accessible address space.

       EINVAL Attempted  to  change  a  cpuset,  using write(2), in a way that
              would violate a cpu_exclusive or mem_exclusive attribute of that
              cpuset or any of its siblings.

       EINVAL Attempted  to  write(2) an empty cpuset.cpus or cpuset.mems list
              to a cpuset which has attached processes or child cpusets.

       EINVAL Attempted to write(2) a cpuset.cpus or  cpuset.mems  list  which
              included  a  range with the second number smaller than the first

       EINVAL Attempted to write(2) a cpuset.cpus or  cpuset.mems  list  which
              included an invalid character in the string.

       EINVAL Attempted  to write(2) a list to a cpuset.cpus file that did not
              include any online CPUs.

       EINVAL Attempted to write(2) a list to a cpuset.mems file that did  not
              include any online memory nodes.

       EINVAL Attempted to write(2) a list to a cpuset.mems file that included
              a node that held no memory.

       EIO    Attempted to write(2) a string to a cpuset tasks file that  does
              not begin with an ASCII decimal integer.

       EIO    Attempted to rename(2) a cpuset into a different directory.

              Attempted to read(2) a /proc/<pid>/cpuset file for a cpuset path
              that is longer than the kernel page size.

              Attempted to create, using mkdir(2), a cpuset whose base  direc-
              tory name is longer than 255 characters.

              Attempted  to  create, using mkdir(2), a cpuset whose full path-
              name, including the mount point (typically "/dev/cpuset/")  pre-
              fix, is longer than 4095 characters.

       ENODEV The  cpuset was removed by another process at the same time as a
              write(2) was attempted on one of the pseudo-files in the  cpuset

       ENOENT Attempted to create, using mkdir(2), a cpuset in a parent cpuset
              that doesn't exist.

       ENOENT Attempted to access(2) or open(2) a nonexistent file in a cpuset

       ENOMEM Insufficient memory is available within the kernel; can occur on
              a variety of system calls affecting cpusets,  but  only  if  the
              system is extremely short of memory.

       ENOSPC Attempted  to  write(2)  the  process ID (PID) of a process to a
              cpuset tasks file when the cpuset had an  empty  cpuset.cpus  or
              empty cpuset.mems setting.

       ENOSPC Attempted  to  write(2) an empty cpuset.cpus or cpuset.mems set-
              ting to a cpuset that has tasks attached.

              Attempted to rename(2) a nonexistent cpuset.

       EPERM  Attempted to remove a file from a cpuset directory.

       ERANGE Specified a cpuset.cpus or cpuset.mems list to the kernel  which
              included  a  number  too  large for the kernel to set in its bit

       ESRCH  Attempted to write(2) the process  ID  (PID)  of  a  nonexistent
              process to a cpuset tasks file.

       Cpusets appeared in version 2.6.12 of the Linux kernel.

       Despite  its  name, the pid parameter is actually a thread ID, and each
       thread in a threaded group can be attached to a different cpuset.   The
       value  returned  from a call to gettid(2) can be passed in the argument

       cpuset.memory_pressure cpuset files can be  opened  for  writing,  cre-
       ation,  or  truncation,  but  then the write(2) fails with errno set to
       EACCES, and the creation and truncation options on open(2) have no  ef-

       The  following examples demonstrate querying and setting cpuset options
       using shell commands.

   Creating and attaching to a cpuset.
       To create a new cpuset and attach the current command shell to it,  the
       steps are:

       1)  mkdir /dev/cpuset (if not already done)
       2)  mount -t cpuset none /dev/cpuset (if not already done)
       3)  Create the new cpuset using mkdir(1).
       4)  Assign CPUs and memory nodes to the new cpuset.
       5)  Attach the shell to the new cpuset.

       For  example,  the  following sequence of commands will set up a cpuset
       named "Charlie", containing just CPUs 2 and 3, and memory node  1,  and
       then attach the current shell to that cpuset.

           $ mkdir /dev/cpuset
           $ mount -t cpuset cpuset /dev/cpuset
           $ cd /dev/cpuset
           $ mkdir Charlie
           $ cd Charlie
           $ /bin/echo 2-3 > cpuset.cpus
           $ /bin/echo 1 > cpuset.mems
           $ /bin/echo $$ > tasks
           # The current shell is now running in cpuset Charlie
           # The next line should display '/Charlie'
           $ cat /proc/self/cpuset

   Migrating a job to different memory nodes.
       To migrate a job (the set of processes attached to a cpuset) to differ-
       ent CPUs and memory nodes in the system, including  moving  the  memory
       pages currently allocated to that job, perform the following steps.

       1)  Let's  say  we  want  to move the job in cpuset alpha (CPUs 4-7 and
           memory nodes 2-3) to a new cpuset beta (CPUs 16-19 and memory nodes
       2)  First create the new cpuset beta.
       3)  Then allow CPUs 16-19 and memory nodes 8-9 in beta.
       4)  Then enable memory_migration in beta.
       5)  Then move each process from alpha to beta.

       The following sequence of commands accomplishes this.

           $ cd /dev/cpuset
           $ mkdir beta
           $ cd beta
           $ /bin/echo 16-19 > cpuset.cpus
           $ /bin/echo 8-9 > cpuset.mems
           $ /bin/echo 1 > cpuset.memory_migrate
           $ while read i; do /bin/echo $i; done < ../alpha/tasks > tasks

       The  above  should  move any processes in alpha to beta, and any memory
       held by these processes on memory nodes 2-3 to memory  nodes  8-9,  re-

       Notice that the last step of the above sequence did not do:

           $ cp ../alpha/tasks tasks

       The  while loop, rather than the seemingly easier use of the cp(1) com-
       mand, was necessary because only one process PID at a time may be writ-
       ten to the tasks file.

       The  same  effect  (writing one PID at a time) as the while loop can be
       accomplished more efficiently, in fewer keystrokes and in  syntax  that
       works  on  any  shell,  but  alas  more obscurely, by using the -u (un-
       buffered) option of sed(1):

           $ sed -un p < ../alpha/tasks > tasks

       taskset(1),  get_mempolicy(2),  getcpu(2),  mbind(2),   sched_getaffin-
       ity(2),  sched_setaffinity(2), sched_setscheduler(2), set_mempolicy(2),
       CPU_SET(3), proc(5), cgroups(7),  numa(7),  sched(7),  migratepages(8),

       Documentation/cgroup-v1/cpusets.txt in the Linux kernel source tree (or
       Documentation/cpusets.txt before Linux 2.6.29)

       This page is part of release 5.05 of the Linux  man-pages  project.   A
       description  of  the project, information about reporting bugs, and the
       latest    version    of    this    page,    can     be     found     at

Linux                             2017-09-15                         CPUSET(7)
Man Pages Copyright Respective Owners. Site Copyright (C) 1994 - 2024 Hurricane Electric. All Rights Reserved.