gitcore-tutorial
GITCORE-TUTORIAL(7) Git Manual GITCORE-TUTORIAL(7)
NAME
gitcore-tutorial - A Git core tutorial for developers
SYNOPSIS
git *
DESCRIPTION
This tutorial explains how to use the "core" Git commands to set up and
work with a Git repository.
If you just need to use Git as a revision control system you may prefer
to start with "A Tutorial Introduction to Git" (gittutorial(7)) or the
Git User Manual[1].
However, an understanding of these low-level tools can be helpful if
you want to understand Git's internals.
The core Git is often called "plumbing", with the prettier user
interfaces on top of it called "porcelain". You may not want to use the
plumbing directly very often, but it can be good to know what the
plumbing does when the porcelain isn't flushing.
Back when this document was originally written, many porcelain commands
were shell scripts. For simplicity, it still uses them as examples to
illustrate how plumbing is fit together to form the porcelain commands.
The source tree includes some of these scripts in contrib/examples/ for
reference. Although these are not implemented as shell scripts anymore,
the description of what the plumbing layer commands do is still valid.
Note
Deeper technical details are often marked as Notes, which you can
skip on your first reading.
CREATING A GIT REPOSITORY
Creating a new Git repository couldn't be easier: all Git repositories
start out empty, and the only thing you need to do is find yourself a
subdirectory that you want to use as a working tree - either an empty
one for a totally new project, or an existing working tree that you
want to import into Git.
For our first example, we're going to start a totally new repository
from scratch, with no pre-existing files, and we'll call it
git-tutorial. To start up, create a subdirectory for it, change into
that subdirectory, and initialize the Git infrastructure with git init:
$ mkdir git-tutorial
$ cd git-tutorial
$ git init
to which Git will reply
Initialized empty Git repository in .git/
which is just Git's way of saying that you haven't been doing anything
strange, and that it will have created a local .git directory setup for
your new project. You will now have a .git directory, and you can
inspect that with ls. For your new empty project, it should show you
three entries, among other things:
o a file called HEAD, that has ref: refs/heads/master in it. This is
similar to a symbolic link and points at refs/heads/master relative
to the HEAD file.
Don't worry about the fact that the file that the HEAD link points
to doesn't even exist yet -- you haven't created the commit that
will start your HEAD development branch yet.
o a subdirectory called objects, which will contain all the objects
of your project. You should never have any real reason to look at
the objects directly, but you might want to know that these objects
are what contains all the real data in your repository.
o a subdirectory called refs, which contains references to objects.
In particular, the refs subdirectory will contain two other
subdirectories, named heads and tags respectively. They do exactly what
their names imply: they contain references to any number of different
heads of development (aka branches), and to any tags that you have
created to name specific versions in your repository.
One note: the special master head is the default branch, which is why
the .git/HEAD file was created points to it even if it doesn't yet
exist. Basically, the HEAD link is supposed to always point to the
branch you are working on right now, and you always start out expecting
to work on the master branch.
However, this is only a convention, and you can name your branches
anything you want, and don't have to ever even have a master branch. A
number of the Git tools will assume that .git/HEAD is valid, though.
Note
An object is identified by its 160-bit SHA-1 hash, aka object name,
and a reference to an object is always the 40-byte hex
representation of that SHA-1 name. The files in the refs
subdirectory are expected to contain these hex references (usually
with a final \n at the end), and you should thus expect to see a
number of 41-byte files containing these references in these refs
subdirectories when you actually start populating your tree.
Note
An advanced user may want to take a look at gitrepository-layout(5)
after finishing this tutorial.
You have now created your first Git repository. Of course, since it's
empty, that's not very useful, so let's start populating it with data.
POPULATING A GIT REPOSITORY
We'll keep this simple and stupid, so we'll start off with populating a
few trivial files just to get a feel for it.
Start off with just creating any random files that you want to maintain
in your Git repository. We'll start off with a few bad examples, just
to get a feel for how this works:
$ echo "Hello World" >hello
$ echo "Silly example" >example
you have now created two files in your working tree (aka working
directory), but to actually check in your hard work, you will have to
go through two steps:
o fill in the index file (aka cache) with the information about your
working tree state.
o commit that index file as an object.
The first step is trivial: when you want to tell Git about any changes
to your working tree, you use the git update-index program. That
program normally just takes a list of filenames you want to update, but
to avoid trivial mistakes, it refuses to add new entries to the index
(or remove existing ones) unless you explicitly tell it that you're
adding a new entry with the --add flag (or removing an entry with the
--remove) flag.
So to populate the index with the two files you just created, you can
do
$ git update-index --add hello example
and you have now told Git to track those two files.
In fact, as you did that, if you now look into your object directory,
you'll notice that Git will have added two new objects to the object
database. If you did exactly the steps above, you should now be able to
do
$ ls .git/objects/??/*
and see two files:
.git/objects/55/7db03de997c86a4a028e1ebd3a1ceb225be238
.git/objects/f2/4c74a2e500f5ee1332c86b94199f52b1d1d962
which correspond with the objects with names of 557db... and f24c7...
respectively.
If you want to, you can use git cat-file to look at those objects, but
you'll have to use the object name, not the filename of the object:
$ git cat-file -t 557db03de997c86a4a028e1ebd3a1ceb225be238
where the -t tells git cat-file to tell you what the "type" of the
object is. Git will tell you that you have a "blob" object (i.e., just
a regular file), and you can see the contents with
$ git cat-file blob 557db03
which will print out "Hello World". The object 557db03 is nothing more
than the contents of your file hello.
Note
Don't confuse that object with the file hello itself. The object is
literally just those specific contents of the file, and however
much you later change the contents in file hello, the object we
just looked at will never change. Objects are immutable.
Note
The second example demonstrates that you can abbreviate the object
name to only the first several hexadecimal digits in most places.
Anyway, as we mentioned previously, you normally never actually take a
look at the objects themselves, and typing long 40-character hex names
is not something you'd normally want to do. The above digression was
just to show that git update-index did something magical, and actually
saved away the contents of your files into the Git object database.
Updating the index did something else too: it created a .git/index
file. This is the index that describes your current working tree, and
something you should be very aware of. Again, you normally never worry
about the index file itself, but you should be aware of the fact that
you have not actually really "checked in" your files into Git so far,
you've only told Git about them.
However, since Git knows about them, you can now start using some of
the most basic Git commands to manipulate the files or look at their
status.
In particular, let's not even check in the two files into Git yet,
we'll start off by adding another line to hello first:
$ echo "It's a new day for git" >>hello
and you can now, since you told Git about the previous state of hello,
ask Git what has changed in the tree compared to your old index, using
the git diff-files command:
$ git diff-files
Oops. That wasn't very readable. It just spit out its own internal
version of a diff, but that internal version really just tells you that
it has noticed that "hello" has been modified, and that the old object
contents it had have been replaced with something else.
To make it readable, we can tell git diff-files to output the
differences as a patch, using the -p flag:
$ git diff-files -p
diff --git a/hello b/hello
index 557db03..263414f 100644
--- a/hello
+++ b/hello
@@ -1 +1,2 @@
Hello World
+It's a new day for git
i.e. the diff of the change we caused by adding another line to hello.
In other words, git diff-files always shows us the difference between
what is recorded in the index, and what is currently in the working
tree. That's very useful.
A common shorthand for git diff-files -p is to just write git diff,
which will do the same thing.
$ git diff
diff --git a/hello b/hello
index 557db03..263414f 100644
--- a/hello
+++ b/hello
@@ -1 +1,2 @@
Hello World
+It's a new day for git
COMMITTING GIT STATE
Now, we want to go to the next stage in Git, which is to take the files
that Git knows about in the index, and commit them as a real tree. We
do that in two phases: creating a tree object, and committing that tree
object as a commit object together with an explanation of what the tree
was all about, along with information of how we came to that state.
Creating a tree object is trivial, and is done with git write-tree.
There are no options or other input: git write-tree will take the
current index state, and write an object that describes that whole
index. In other words, we're now tying together all the different
filenames with their contents (and their permissions), and we're
creating the equivalent of a Git "directory" object:
$ git write-tree
and this will just output the name of the resulting tree, in this case
(if you have done exactly as I've described) it should be
8988da15d077d4829fc51d8544c097def6644dbb
which is another incomprehensible object name. Again, if you want to,
you can use git cat-file -t 8988d... to see that this time the object
is not a "blob" object, but a "tree" object (you can also use git
cat-file to actually output the raw object contents, but you'll see
mainly a binary mess, so that's less interesting).
However -- normally you'd never use git write-tree on its own, because
normally you always commit a tree into a commit object using the git
commit-tree command. In fact, it's easier to not actually use git
write-tree on its own at all, but to just pass its result in as an
argument to git commit-tree.
git commit-tree normally takes several arguments -- it wants to know
what the parent of a commit was, but since this is the first commit
ever in this new repository, and it has no parents, we only need to
pass in the object name of the tree. However, git commit-tree also
wants to get a commit message on its standard input, and it will write
out the resulting object name for the commit to its standard output.
And this is where we create the .git/refs/heads/master file which is
pointed at by HEAD. This file is supposed to contain the reference to
the top-of-tree of the master branch, and since that's exactly what git
commit-tree spits out, we can do this all with a sequence of simple
shell commands:
$ tree=$(git write-tree)
$ commit=$(echo 'Initial commit' | git commit-tree $tree)
$ git update-ref HEAD $commit
In this case this creates a totally new commit that is not related to
anything else. Normally you do this only once for a project ever, and
all later commits will be parented on top of an earlier commit.
Again, normally you'd never actually do this by hand. There is a
helpful script called git commit that will do all of this for you. So
you could have just written git commit instead, and it would have done
the above magic scripting for you.
MAKING A CHANGE
Remember how we did the git update-index on file hello and then we
changed hello afterward, and could compare the new state of hello with
the state we saved in the index file?
Further, remember how I said that git write-tree writes the contents of
the index file to the tree, and thus what we just committed was in fact
the original contents of the file hello, not the new ones. We did that
on purpose, to show the difference between the index state, and the
state in the working tree, and how they don't have to match, even when
we commit things.
As before, if we do git diff-files -p in our git-tutorial project,
we'll still see the same difference we saw last time: the index file
hasn't changed by the act of committing anything. However, now that we
have committed something, we can also learn to use a new command: git
diff-index.
Unlike git diff-files, which showed the difference between the index
file and the working tree, git diff-index shows the differences between
a committed tree and either the index file or the working tree. In
other words, git diff-index wants a tree to be diffed against, and
before we did the commit, we couldn't do that, because we didn't have
anything to diff against.
But now we can do
$ git diff-index -p HEAD
(where -p has the same meaning as it did in git diff-files), and it
will show us the same difference, but for a totally different reason.
Now we're comparing the working tree not against the index file, but
against the tree we just wrote. It just so happens that those two are
obviously the same, so we get the same result.
Again, because this is a common operation, you can also just shorthand
it with
$ git diff HEAD
which ends up doing the above for you.
In other words, git diff-index normally compares a tree against the
working tree, but when given the --cached flag, it is told to instead
compare against just the index cache contents, and ignore the current
working tree state entirely. Since we just wrote the index file to
HEAD, doing git diff-index --cached -p HEAD should thus return an empty
set of differences, and that's exactly what it does.
Note
git diff-index really always uses the index for its comparisons,
and saying that it compares a tree against the working tree is thus
not strictly accurate. In particular, the list of files to compare
(the "meta-data") always comes from the index file, regardless of
whether the --cached flag is used or not. The --cached flag really
only determines whether the file contents to be compared come from
the working tree or not.
This is not hard to understand, as soon as you realize that Git
simply never knows (or cares) about files that it is not told about
explicitly. Git will never go looking for files to compare, it
expects you to tell it what the files are, and that's what the
index is there for.
However, our next step is to commit the change we did, and again, to
understand what's going on, keep in mind the difference between
"working tree contents", "index file" and "committed tree". We have
changes in the working tree that we want to commit, and we always have
to work through the index file, so the first thing we need to do is to
update the index cache:
$ git update-index hello
(note how we didn't need the --add flag this time, since Git knew about
the file already).
Note what happens to the different git diff-* versions here. After
we've updated hello in the index, git diff-files -p now shows no
differences, but git diff-index -p HEAD still does show that the
current state is different from the state we committed. In fact, now
git diff-index shows the same difference whether we use the --cached
flag or not, since now the index is coherent with the working tree.
Now, since we've updated hello in the index, we can commit the new
version. We could do it by writing the tree by hand again, and
committing the tree (this time we'd have to use the -p HEAD flag to
tell commit that the HEAD was the parent of the new commit, and that
this wasn't an initial commit any more), but you've done that once
already, so let's just use the helpful script this time:
$ git commit
which starts an editor for you to write the commit message and tells
you a bit about what you have done.
Write whatever message you want, and all the lines that start with #
will be pruned out, and the rest will be used as the commit message for
the change. If you decide you don't want to commit anything after all
at this point (you can continue to edit things and update the index),
you can just leave an empty message. Otherwise git commit will commit
the change for you.
You've now made your first real Git commit. And if you're interested in
looking at what git commit really does, feel free to investigate: it's
a few very simple shell scripts to generate the helpful (?) commit
message headers, and a few one-liners that actually do the commit
itself (git commit).
INSPECTING CHANGES
While creating changes is useful, it's even more useful if you can tell
later what changed. The most useful command for this is another of the
diff family, namely git diff-tree.
git diff-tree can be given two arbitrary trees, and it will tell you
the differences between them. Perhaps even more commonly, though, you
can give it just a single commit object, and it will figure out the
parent of that commit itself, and show the difference directly. Thus,
to get the same diff that we've already seen several times, we can now
do
$ git diff-tree -p HEAD
(again, -p means to show the difference as a human-readable patch), and
it will show what the last commit (in HEAD) actually changed.
Note
Here is an ASCII art by Jon Loeliger that illustrates how various
diff-* commands compare things.
diff-tree
+----+
| |
| |
V V
+-----------+
| Object DB |
| Backing |
| Store |
+-----------+
^ ^
| |
| | diff-index --cached
| |
diff-index | V
| +-----------+
| | Index |
| | "cache" |
| +-----------+
| ^
| |
| | diff-files
| |
V V
+-----------+
| Working |
| Directory |
+-----------+
More interestingly, you can also give git diff-tree the --pretty flag,
which tells it to also show the commit message and author and date of
the commit, and you can tell it to show a whole series of diffs.
Alternatively, you can tell it to be "silent", and not show the diffs
at all, but just show the actual commit message.
In fact, together with the git rev-list program (which generates a list
of revisions), git diff-tree ends up being a veritable fount of
changes. You can emulate git log, git log -p, etc. with a trivial
script that pipes the output of git rev-list to git diff-tree --stdin,
which was exactly how early versions of git log were implemented.
TAGGING A VERSION
In Git, there are two kinds of tags, a "light" one, and an "annotated
tag".
A "light" tag is technically nothing more than a branch, except we put
it in the .git/refs/tags/ subdirectory instead of calling it a head. So
the simplest form of tag involves nothing more than
$ git tag my-first-tag
which just writes the current HEAD into the .git/refs/tags/my-first-tag
file, after which point you can then use this symbolic name for that
particular state. You can, for example, do
$ git diff my-first-tag
to diff your current state against that tag which at this point will
obviously be an empty diff, but if you continue to develop and commit
stuff, you can use your tag as an "anchor-point" to see what has
changed since you tagged it.
An "annotated tag" is actually a real Git object, and contains not only
a pointer to the state you want to tag, but also a small tag name and
message, along with optionally a PGP signature that says that yes, you
really did that tag. You create these annotated tags with either the -a
or -s flag to git tag:
$ git tag -s <tagname>
which will sign the current HEAD (but you can also give it another
argument that specifies the thing to tag, e.g., you could have tagged
the current mybranch point by using git tag <tagname> mybranch).
You normally only do signed tags for major releases or things like
that, while the light-weight tags are useful for any marking you want
to do -- any time you decide that you want to remember a certain point,
just create a private tag for it, and you have a nice symbolic name for
the state at that point.
COPYING REPOSITORIES
Git repositories are normally totally self-sufficient and relocatable.
Unlike CVS, for example, there is no separate notion of "repository"
and "working tree". A Git repository normally is the working tree, with
the local Git information hidden in the .git subdirectory. There is
nothing else. What you see is what you got.
Note
You can tell Git to split the Git internal information from the
directory that it tracks, but we'll ignore that for now: it's not
how normal projects work, and it's really only meant for special
uses. So the mental model of "the Git information is always tied
directly to the working tree that it describes" may not be
technically 100% accurate, but it's a good model for all normal
use.
This has two implications:
o if you grow bored with the tutorial repository you created (or
you've made a mistake and want to start all over), you can just do
simple
$ rm -rf git-tutorial
and it will be gone. There's no external repository, and there's no
history outside the project you created.
o if you want to move or duplicate a Git repository, you can do so.
There is git clone command, but if all you want to do is just to
create a copy of your repository (with all the full history that
went along with it), you can do so with a regular cp -a
git-tutorial new-git-tutorial.
Note that when you've moved or copied a Git repository, your Git
index file (which caches various information, notably some of the
"stat" information for the files involved) will likely need to be
refreshed. So after you do a cp -a to create a new copy, you'll
want to do
$ git update-index --refresh
in the new repository to make sure that the index file is up to
date.
Note that the second point is true even across machines. You can
duplicate a remote Git repository with any regular copy mechanism, be
it scp, rsync or wget.
When copying a remote repository, you'll want to at a minimum update
the index cache when you do this, and especially with other peoples'
repositories you often want to make sure that the index cache is in
some known state (you don't know what they've done and not yet checked
in), so usually you'll precede the git update-index with a
$ git read-tree --reset HEAD
$ git update-index --refresh
which will force a total index re-build from the tree pointed to by
HEAD. It resets the index contents to HEAD, and then the git
update-index makes sure to match up all index entries with the
checked-out files. If the original repository had uncommitted changes
in its working tree, git update-index --refresh notices them and tells
you they need to be updated.
The above can also be written as simply
$ git reset
and in fact a lot of the common Git command combinations can be
scripted with the git xyz interfaces. You can learn things by just
looking at what the various git scripts do. For example, git reset used
to be the above two lines implemented in git reset, but some things
like git status and git commit are slightly more complex scripts around
the basic Git commands.
Many (most?) public remote repositories will not contain any of the
checked out files or even an index file, and will only contain the
actual core Git files. Such a repository usually doesn't even have the
.git subdirectory, but has all the Git files directly in the
repository.
To create your own local live copy of such a "raw" Git repository,
you'd first create your own subdirectory for the project, and then copy
the raw repository contents into the .git directory. For example, to
create your own copy of the Git repository, you'd do the following
$ mkdir my-git
$ cd my-git
$ rsync -rL rsync://rsync.kernel.org/pub/scm/git/git.git/ .git
followed by
$ git read-tree HEAD
to populate the index. However, now you have populated the index, and
you have all the Git internal files, but you will notice that you don't
actually have any of the working tree files to work on. To get those,
you'd check them out with
$ git checkout-index -u -a
where the -u flag means that you want the checkout to keep the index up
to date (so that you don't have to refresh it afterward), and the -a
flag means "check out all files" (if you have a stale copy or an older
version of a checked out tree you may also need to add the -f flag
first, to tell git checkout-index to force overwriting of any old
files).
Again, this can all be simplified with
$ git clone git://git.kernel.org/pub/scm/git/git.git/ my-git
$ cd my-git
$ git checkout
which will end up doing all of the above for you.
You have now successfully copied somebody else's (mine) remote
repository, and checked it out.
CREATING A NEW BRANCH
Branches in Git are really nothing more than pointers into the Git
object database from within the .git/refs/ subdirectory, and as we
already discussed, the HEAD branch is nothing but a symlink to one of
these object pointers.
You can at any time create a new branch by just picking an arbitrary
point in the project history, and just writing the SHA-1 name of that
object into a file under .git/refs/heads/. You can use any filename you
want (and indeed, subdirectories), but the convention is that the
"normal" branch is called master. That's just a convention, though, and
nothing enforces it.
To show that as an example, let's go back to the git-tutorial
repository we used earlier, and create a branch in it. You do that by
simply just saying that you want to check out a new branch:
$ git switch -c mybranch
will create a new branch based at the current HEAD position, and switch
to it.
Note
If you make the decision to start your new branch at some other
point in the history than the current HEAD, you can do so by just
telling git switch what the base of the checkout would be. In other
words, if you have an earlier tag or branch, you'd just do
$ git switch -c mybranch earlier-commit
and it would create the new branch mybranch at the earlier commit,
and check out the state at that time.
You can always just jump back to your original master branch by doing
$ git switch master
(or any other branch-name, for that matter) and if you forget which
branch you happen to be on, a simple
$ cat .git/HEAD
will tell you where it's pointing. To get the list of branches you
have, you can say
$ git branch
which used to be nothing more than a simple script around ls
.git/refs/heads. There will be an asterisk in front of the branch you
are currently on.
Sometimes you may wish to create a new branch without actually checking
it out and switching to it. If so, just use the command
$ git branch <branchname> [startingpoint]
which will simply create the branch, but will not do anything further.
You can then later -- once you decide that you want to actually develop
on that branch -- switch to that branch with a regular git switch with
the branchname as the argument.
MERGING TWO BRANCHES
One of the ideas of having a branch is that you do some (possibly
experimental) work in it, and eventually merge it back to the main
branch. So assuming you created the above mybranch that started out
being the same as the original master branch, let's make sure we're in
that branch, and do some work there.
$ git switch mybranch
$ echo "Work, work, work" >>hello
$ git commit -m "Some work." -i hello
Here, we just added another line to hello, and we used a shorthand for
doing both git update-index hello and git commit by just giving the
filename directly to git commit, with an -i flag (it tells Git to
include that file in addition to what you have done to the index file
so far when making the commit). The -m flag is to give the commit log
message from the command line.
Now, to make it a bit more interesting, let's assume that somebody else
does some work in the original branch, and simulate that by going back
to the master branch, and editing the same file differently there:
$ git switch master
Here, take a moment to look at the contents of hello, and notice how
they don't contain the work we just did in mybranch -- because that
work hasn't happened in the master branch at all. Then do
$ echo "Play, play, play" >>hello
$ echo "Lots of fun" >>example
$ git commit -m "Some fun." -i hello example
since the master branch is obviously in a much better mood.
Now, you've got two branches, and you decide that you want to merge the
work done. Before we do that, let's introduce a cool graphical tool
that helps you view what's going on:
$ gitk --all
will show you graphically both of your branches (that's what the --all
means: normally it will just show you your current HEAD) and their
histories. You can also see exactly how they came to be from a common
source.
Anyway, let's exit gitk (^Q or the File menu), and decide that we want
to merge the work we did on the mybranch branch into the master branch
(which is currently our HEAD too). To do that, there's a nice script
called git merge, which wants to know which branches you want to
resolve and what the merge is all about:
$ git merge -m "Merge work in mybranch" mybranch
where the first argument is going to be used as the commit message if
the merge can be resolved automatically.
Now, in this case we've intentionally created a situation where the
merge will need to be fixed up by hand, though, so Git will do as much
of it as it can automatically (which in this case is just merge the
example file, which had no differences in the mybranch branch), and
say:
Auto-merging hello
CONFLICT (content): Merge conflict in hello
Automatic merge failed; fix conflicts and then commit the result.
It tells you that it did an "Automatic merge", which failed due to
conflicts in hello.
Not to worry. It left the (trivial) conflict in hello in the same form
you should already be well used to if you've ever used CVS, so let's
just open hello in our editor (whatever that may be), and fix it up
somehow. I'd suggest just making it so that hello contains all four
lines:
Hello World
It's a new day for git
Play, play, play
Work, work, work
and once you're happy with your manual merge, just do a
$ git commit -i hello
which will very loudly warn you that you're now committing a merge
(which is correct, so never mind), and you can write a small merge
message about your adventures in git merge-land.
After you're done, start up gitk --all to see graphically what the
history looks like. Notice that mybranch still exists, and you can
switch to it, and continue to work with it if you want to. The mybranch
branch will not contain the merge, but next time you merge it from the
master branch, Git will know how you merged it, so you'll not have to
do that merge again.
Another useful tool, especially if you do not always work in X-Window
environment, is git show-branch.
$ git show-branch --topo-order --more=1 master mybranch
* [master] Merge work in mybranch
! [mybranch] Some work.
--
- [master] Merge work in mybranch
*+ [mybranch] Some work.
* [master^] Some fun.
The first two lines indicate that it is showing the two branches with
the titles of their top-of-the-tree commits, you are currently on
master branch (notice the asterisk * character), and the first column
for the later output lines is used to show commits contained in the
master branch, and the second column for the mybranch branch. Three
commits are shown along with their titles. All of them have non blank
characters in the first column (* shows an ordinary commit on the
current branch, - is a merge commit), which means they are now part of
the master branch. Only the "Some work" commit has the plus + character
in the second column, because mybranch has not been merged to
incorporate these commits from the master branch. The string inside
brackets before the commit log message is a short name you can use to
name the commit. In the above example, master and mybranch are branch
heads. master^ is the first parent of master branch head. Please see
gitrevisions(7) if you want to see more complex cases.
Note
Without the --more=1 option, git show-branch would not output the
[master^] commit, as [mybranch] commit is a common ancestor of both
master and mybranch tips. Please see git-show-branch(1) for
details.
Note
If there were more commits on the master branch after the merge,
the merge commit itself would not be shown by git show-branch by
default. You would need to provide --sparse option to make the
merge commit visible in this case.
Now, let's pretend you are the one who did all the work in mybranch,
and the fruit of your hard work has finally been merged to the master
branch. Let's go back to mybranch, and run git merge to get the
"upstream changes" back to your branch.
$ git switch mybranch
$ git merge -m "Merge upstream changes." master
This outputs something like this (the actual commit object names would
be different)
Updating from ae3a2da... to a80b4aa....
Fast-forward (no commit created; -m option ignored)
example | 1 +
hello | 1 +
2 files changed, 2 insertions(+)
Because your branch did not contain anything more than what had already
been merged into the master branch, the merge operation did not
actually do a merge. Instead, it just updated the top of the tree of
your branch to that of the master branch. This is often called
fast-forward merge.
You can run gitk --all again to see how the commit ancestry looks like,
or run show-branch, which tells you this.
$ git show-branch master mybranch
! [master] Merge work in mybranch
* [mybranch] Merge work in mybranch
--
-- [master] Merge work in mybranch
MERGING EXTERNAL WORK
It's usually much more common that you merge with somebody else than
merging with your own branches, so it's worth pointing out that Git
makes that very easy too, and in fact, it's not that different from
doing a git merge. In fact, a remote merge ends up being nothing more
than "fetch the work from a remote repository into a temporary tag"
followed by a git merge.
Fetching from a remote repository is done by, unsurprisingly, git
fetch:
$ git fetch <remote-repository>
One of the following transports can be used to name the repository to
download from:
SSH
remote.machine:/path/to/repo.git/ or
ssh://remote.machine/path/to/repo.git/
This transport can be used for both uploading and downloading, and
requires you to have a log-in privilege over ssh to the remote
machine. It finds out the set of objects the other side lacks by
exchanging the head commits both ends have and transfers (close to)
minimum set of objects. It is by far the most efficient way to
exchange Git objects between repositories.
Local directory
/path/to/repo.git/
This transport is the same as SSH transport but uses sh to run both
ends on the local machine instead of running other end on the
remote machine via ssh.
Git Native
git://remote.machine/path/to/repo.git/
This transport was designed for anonymous downloading. Like SSH
transport, it finds out the set of objects the downstream side
lacks and transfers (close to) minimum set of objects.
HTTP(S)
http://remote.machine/path/to/repo.git/
Downloader from http and https URL first obtains the topmost commit
object name from the remote site by looking at the specified
refname under repo.git/refs/ directory, and then tries to obtain
the commit object by downloading from repo.git/objects/xx/xxx...
using the object name of that commit object. Then it reads the
commit object to find out its parent commits and the associate tree
object; it repeats this process until it gets all the necessary
objects. Because of this behavior, they are sometimes also called
commit walkers.
The commit walkers are sometimes also called dumb transports,
because they do not require any Git aware smart server like Git
Native transport does. Any stock HTTP server that does not even
support directory index would suffice. But you must prepare your
repository with git update-server-info to help dumb transport
downloaders.
Once you fetch from the remote repository, you merge that with your
current branch.
However -- it's such a common thing to fetch and then immediately
merge, that it's called git pull, and you can simply do
$ git pull <remote-repository>
and optionally give a branch-name for the remote end as a second
argument.
Note
You could do without using any branches at all, by keeping as many
local repositories as you would like to have branches, and merging
between them with git pull, just like you merge between branches.
The advantage of this approach is that it lets you keep a set of
files for each branch checked out and you may find it easier to
switch back and forth if you juggle multiple lines of development
simultaneously. Of course, you will pay the price of more disk
usage to hold multiple working trees, but disk space is cheap these
days.
It is likely that you will be pulling from the same remote repository
from time to time. As a short hand, you can store the remote repository
URL in the local repository's config file like this:
$ git config remote.linus.url http://www.kernel.org/pub/scm/git/git.git/
and use the "linus" keyword with git pull instead of the full URL.
Examples.
1. git pull linus
2. git pull linus tag v0.99.1
the above are equivalent to:
1. git pull http://www.kernel.org/pub/scm/git/git.git/ HEAD
2. git pull http://www.kernel.org/pub/scm/git/git.git/ tag v0.99.1
HOW DOES THE MERGE WORK?
We said this tutorial shows what plumbing does to help you cope with
the porcelain that isn't flushing, but we so far did not talk about how
the merge really works. If you are following this tutorial the first
time, I'd suggest to skip to "Publishing your work" section and come
back here later.
OK, still with me? To give us an example to look at, let's go back to
the earlier repository with "hello" and "example" file, and bring
ourselves back to the pre-merge state:
$ git show-branch --more=2 master mybranch
! [master] Merge work in mybranch
* [mybranch] Merge work in mybranch
--
-- [master] Merge work in mybranch
+* [master^2] Some work.
+* [master^] Some fun.
Remember, before running git merge, our master head was at "Some fun."
commit, while our mybranch head was at "Some work." commit.
$ git switch -C mybranch master^2
$ git switch master
$ git reset --hard master^
After rewinding, the commit structure should look like this:
$ git show-branch
* [master] Some fun.
! [mybranch] Some work.
--
* [master] Some fun.
+ [mybranch] Some work.
*+ [master^] Initial commit
Now we are ready to experiment with the merge by hand.
git merge command, when merging two branches, uses 3-way merge
algorithm. First, it finds the common ancestor between them. The
command it uses is git merge-base:
$ mb=$(git merge-base HEAD mybranch)
The command writes the commit object name of the common ancestor to the
standard output, so we captured its output to a variable, because we
will be using it in the next step. By the way, the common ancestor
commit is the "Initial commit" commit in this case. You can tell it by:
$ git name-rev --name-only --tags $mb
my-first-tag
After finding out a common ancestor commit, the second step is this:
$ git read-tree -m -u $mb HEAD mybranch
This is the same git read-tree command we have already seen, but it
takes three trees, unlike previous examples. This reads the contents of
each tree into different stage in the index file (the first tree goes
to stage 1, the second to stage 2, etc.). After reading three trees
into three stages, the paths that are the same in all three stages are
collapsed into stage 0. Also paths that are the same in two of three
stages are collapsed into stage 0, taking the SHA-1 from either stage 2
or stage 3, whichever is different from stage 1 (i.e. only one side
changed from the common ancestor).
After collapsing operation, paths that are different in three trees are
left in non-zero stages. At this point, you can inspect the index file
with this command:
$ git ls-files --stage
100644 7f8b141b65fdcee47321e399a2598a235a032422 0 example
100644 557db03de997c86a4a028e1ebd3a1ceb225be238 1 hello
100644 ba42a2a96e3027f3333e13ede4ccf4498c3ae942 2 hello
100644 cc44c73eb783565da5831b4d820c962954019b69 3 hello
In our example of only two files, we did not have unchanged files so
only example resulted in collapsing. But in real-life large projects,
when only a small number of files change in one commit, this collapsing
tends to trivially merge most of the paths fairly quickly, leaving only
a handful of real changes in non-zero stages.
To look at only non-zero stages, use --unmerged flag:
$ git ls-files --unmerged
100644 557db03de997c86a4a028e1ebd3a1ceb225be238 1 hello
100644 ba42a2a96e3027f3333e13ede4ccf4498c3ae942 2 hello
100644 cc44c73eb783565da5831b4d820c962954019b69 3 hello
The next step of merging is to merge these three versions of the file,
using 3-way merge. This is done by giving git merge-one-file command as
one of the arguments to git merge-index command:
$ git merge-index git-merge-one-file hello
Auto-merging hello
ERROR: Merge conflict in hello
fatal: merge program failed
git merge-one-file script is called with parameters to describe those
three versions, and is responsible to leave the merge results in the
working tree. It is a fairly straightforward shell script, and
eventually calls merge program from RCS suite to perform a file-level
3-way merge. In this case, merge detects conflicts, and the merge
result with conflict marks is left in the working tree.. This can be
seen if you run ls-files --stage again at this point:
$ git ls-files --stage
100644 7f8b141b65fdcee47321e399a2598a235a032422 0 example
100644 557db03de997c86a4a028e1ebd3a1ceb225be238 1 hello
100644 ba42a2a96e3027f3333e13ede4ccf4498c3ae942 2 hello
100644 cc44c73eb783565da5831b4d820c962954019b69 3 hello
This is the state of the index file and the working file after git
merge returns control back to you, leaving the conflicting merge for
you to resolve. Notice that the path hello is still unmerged, and what
you see with git diff at this point is differences since stage 2 (i.e.
your version).
PUBLISHING YOUR WORK
So, we can use somebody else's work from a remote repository, but how
can you prepare a repository to let other people pull from it?
You do your real work in your working tree that has your primary
repository hanging under it as its .git subdirectory. You could make
that repository accessible remotely and ask people to pull from it, but
in practice that is not the way things are usually done. A recommended
way is to have a public repository, make it reachable by other people,
and when the changes you made in your primary working tree are in good
shape, update the public repository from it. This is often called
pushing.
Note
This public repository could further be mirrored, and that is how
Git repositories at kernel.org are managed.
Publishing the changes from your local (private) repository to your
remote (public) repository requires a write privilege on the remote
machine. You need to have an SSH account there to run a single command,
git-receive-pack.
First, you need to create an empty repository on the remote machine
that will house your public repository. This empty repository will be
populated and be kept up to date by pushing into it later. Obviously,
this repository creation needs to be done only once.
Note
git push uses a pair of commands, git send-pack on your local
machine, and git-receive-pack on the remote machine. The
communication between the two over the network internally uses an
SSH connection.
Your private repository's Git directory is usually .git, but your
public repository is often named after the project name, i.e.
<project>.git. Let's create such a public repository for project
my-git. After logging into the remote machine, create an empty
directory:
$ mkdir my-git.git
Then, make that directory into a Git repository by running git init,
but this time, since its name is not the usual .git, we do things
slightly differently:
$ GIT_DIR=my-git.git git init
Make sure this directory is available for others you want your changes
to be pulled via the transport of your choice. Also you need to make
sure that you have the git-receive-pack program on the $PATH.
Note
Many installations of sshd do not invoke your shell as the login
shell when you directly run programs; what this means is that if
your login shell is bash, only .bashrc is read and not
.bash_profile. As a workaround, make sure .bashrc sets up $PATH so
that you can run git-receive-pack program.
Note
If you plan to publish this repository to be accessed over http,
you should do mv my-git.git/hooks/post-update.sample
my-git.git/hooks/post-update at this point. This makes sure that
every time you push into this repository, git update-server-info is
run.
Your "public repository" is now ready to accept your changes. Come back
to the machine you have your private repository. From there, run this
command:
$ git push <public-host>:/path/to/my-git.git master
This synchronizes your public repository to match the named branch head
(i.e. master in this case) and objects reachable from them in your
current repository.
As a real example, this is how I update my public Git repository.
Kernel.org mirror network takes care of the propagation to other
publicly visible machines:
$ git push master.kernel.org:/pub/scm/git/git.git/
PACKING YOUR REPOSITORY
Earlier, we saw that one file under .git/objects/??/ directory is
stored for each Git object you create. This representation is efficient
to create atomically and safely, but not so convenient to transport
over the network. Since Git objects are immutable once they are
created, there is a way to optimize the storage by "packing them
together". The command
$ git repack
will do it for you. If you followed the tutorial examples, you would
have accumulated about 17 objects in .git/objects/??/ directories by
now. git repack tells you how many objects it packed, and stores the
packed file in the .git/objects/pack directory.
Note
You will see two files, pack-*.pack and pack-*.idx, in
.git/objects/pack directory. They are closely related to each
other, and if you ever copy them by hand to a different repository
for whatever reason, you should make sure you copy them together.
The former holds all the data from the objects in the pack, and the
latter holds the index for random access.
If you are paranoid, running git verify-pack command would detect if
you have a corrupt pack, but do not worry too much. Our programs are
always perfect ;-).
Once you have packed objects, you do not need to leave the unpacked
objects that are contained in the pack file anymore.
$ git prune-packed
would remove them for you.
You can try running find .git/objects -type f before and after you run
git prune-packed if you are curious. Also git count-objects would tell
you how many unpacked objects are in your repository and how much space
they are consuming.
Note
git pull is slightly cumbersome for HTTP transport, as a packed
repository may contain relatively few objects in a relatively large
pack. If you expect many HTTP pulls from your public repository you
might want to repack & prune often, or never.
If you run git repack again at this point, it will say "Nothing new to
pack.". Once you continue your development and accumulate the changes,
running git repack again will create a new pack, that contains objects
created since you packed your repository the last time. We recommend
that you pack your project soon after the initial import (unless you
are starting your project from scratch), and then run git repack every
once in a while, depending on how active your project is.
When a repository is synchronized via git push and git pull objects
packed in the source repository are usually stored unpacked in the
destination. While this allows you to use different packing strategies
on both ends, it also means you may need to repack both repositories
every once in a while.
WORKING WITH OTHERS
Although Git is a truly distributed system, it is often convenient to
organize your project with an informal hierarchy of developers. Linux
kernel development is run this way. There is a nice illustration (page
17, "Merges to Mainline") in Randy Dunlap's presentation[2].
It should be stressed that this hierarchy is purely informal. There is
nothing fundamental in Git that enforces the "chain of patch flow" this
hierarchy implies. You do not have to pull from only one remote
repository.
A recommended workflow for a "project lead" goes like this:
1. Prepare your primary repository on your local machine. Your work is
done there.
2. Prepare a public repository accessible to others.
If other people are pulling from your repository over dumb
transport protocols (HTTP), you need to keep this repository dumb
transport friendly. After git init,
$GIT_DIR/hooks/post-update.sample copied from the standard
templates would contain a call to git update-server-info but you
need to manually enable the hook with mv post-update.sample
post-update. This makes sure git update-server-info keeps the
necessary files up to date.
3. Push into the public repository from your primary repository.
4. git repack the public repository. This establishes a big pack that
contains the initial set of objects as the baseline, and possibly
git prune if the transport used for pulling from your repository
supports packed repositories.
5. Keep working in your primary repository. Your changes include
modifications of your own, patches you receive via e-mails, and
merges resulting from pulling the "public" repositories of your
"subsystem maintainers".
You can repack this private repository whenever you feel like.
6. Push your changes to the public repository, and announce it to the
public.
7. Every once in a while, git repack the public repository. Go back to
step 5. and continue working.
A recommended work cycle for a "subsystem maintainer" who works on that
project and has an own "public repository" goes like this:
1. Prepare your work repository, by running git clone on the public
repository of the "project lead". The URL used for the initial
cloning is stored in the remote.origin.url configuration variable.
2. Prepare a public repository accessible to others, just like the
"project lead" person does.
3. Copy over the packed files from "project lead" public repository to
your public repository, unless the "project lead" repository lives
on the same machine as yours. In the latter case, you can use
objects/info/alternates file to point at the repository you are
borrowing from.
4. Push into the public repository from your primary repository. Run
git repack, and possibly git prune if the transport used for
pulling from your repository supports packed repositories.
5. Keep working in your primary repository. Your changes include
modifications of your own, patches you receive via e-mails, and
merges resulting from pulling the "public" repositories of your
"project lead" and possibly your "sub-subsystem maintainers".
You can repack this private repository whenever you feel like.
6. Push your changes to your public repository, and ask your "project
lead" and possibly your "sub-subsystem maintainers" to pull from
it.
7. Every once in a while, git repack the public repository. Go back to
step 5. and continue working.
A recommended work cycle for an "individual developer" who does not
have a "public" repository is somewhat different. It goes like this:
1. Prepare your work repository, by git clone the public repository of
the "project lead" (or a "subsystem maintainer", if you work on a
subsystem). The URL used for the initial cloning is stored in the
remote.origin.url configuration variable.
2. Do your work in your repository on master branch.
3. Run git fetch origin from the public repository of your upstream
every once in a while. This does only the first half of git pull
but does not merge. The head of the public repository is stored in
.git/refs/remotes/origin/master.
4. Use git cherry origin to see which ones of your patches were
accepted, and/or use git rebase origin to port your unmerged
changes forward to the updated upstream.
5. Use git format-patch origin to prepare patches for e-mail
submission to your upstream and send it out. Go back to step 2. and
continue.
WORKING WITH OTHERS, SHARED REPOSITORY STYLE
If you are coming from a CVS background, the style of cooperation
suggested in the previous section may be new to you. You do not have to
worry. Git supports the "shared public repository" style of cooperation
you are probably more familiar with as well.
See gitcvs-migration(7) for the details.
BUNDLING YOUR WORK TOGETHER
It is likely that you will be working on more than one thing at a time.
It is easy to manage those more-or-less independent tasks using
branches with Git.
We have already seen how branches work previously, with "fun and work"
example using two branches. The idea is the same if there are more than
two branches. Let's say you started out from "master" head, and have
some new code in the "master" branch, and two independent fixes in the
"commit-fix" and "diff-fix" branches:
$ git show-branch
! [commit-fix] Fix commit message normalization.
! [diff-fix] Fix rename detection.
* [master] Release candidate #1
---
+ [diff-fix] Fix rename detection.
+ [diff-fix~1] Better common substring algorithm.
+ [commit-fix] Fix commit message normalization.
* [master] Release candidate #1
++* [diff-fix~2] Pretty-print messages.
Both fixes are tested well, and at this point, you want to merge in
both of them. You could merge in diff-fix first and then commit-fix
next, like this:
$ git merge -m "Merge fix in diff-fix" diff-fix
$ git merge -m "Merge fix in commit-fix" commit-fix
Which would result in:
$ git show-branch
! [commit-fix] Fix commit message normalization.
! [diff-fix] Fix rename detection.
* [master] Merge fix in commit-fix
---
- [master] Merge fix in commit-fix
+ * [commit-fix] Fix commit message normalization.
- [master~1] Merge fix in diff-fix
+* [diff-fix] Fix rename detection.
+* [diff-fix~1] Better common substring algorithm.
* [master~2] Release candidate #1
++* [master~3] Pretty-print messages.
However, there is no particular reason to merge in one branch first and
the other next, when what you have are a set of truly independent
changes (if the order mattered, then they are not independent by
definition). You could instead merge those two branches into the
current branch at once. First let's undo what we just did and start
over. We would want to get the master branch before these two merges by
resetting it to master~2:
$ git reset --hard master~2
You can make sure git show-branch matches the state before those two
git merge you just did. Then, instead of running two git merge commands
in a row, you would merge these two branch heads (this is known as
making an Octopus):
$ git merge commit-fix diff-fix
$ git show-branch
! [commit-fix] Fix commit message normalization.
! [diff-fix] Fix rename detection.
* [master] Octopus merge of branches 'diff-fix' and 'commit-fix'
---
- [master] Octopus merge of branches 'diff-fix' and 'commit-fix'
+ * [commit-fix] Fix commit message normalization.
+* [diff-fix] Fix rename detection.
+* [diff-fix~1] Better common substring algorithm.
* [master~1] Release candidate #1
++* [master~2] Pretty-print messages.
Note that you should not do Octopus just because you can. An octopus is
a valid thing to do and often makes it easier to view the commit
history if you are merging more than two independent changes at the
same time. However, if you have merge conflicts with any of the
branches you are merging in and need to hand resolve, that is an
indication that the development happened in those branches were not
independent after all, and you should merge two at a time, documenting
how you resolved the conflicts, and the reason why you preferred
changes made in one side over the other. Otherwise it would make the
project history harder to follow, not easier.
SEE ALSO
gittutorial(7), gittutorial-2(7), gitcvs-migration(7), git-help(1),
giteveryday(7), The Git User's Manual[1]
GIT
Part of the git(1) suite
NOTES
1. the Git User Manual
file:///usr/share/doc/git/html/user-manual.html
2. Randy Dunlap's presentation
https://web.archive.org/web/20120915203609/http://www.xenotime.net/linux/mentor/linux-mentoring-2006.pdf
Git 2.25.1 04/26/2023 GITCORE-TUTORIAL(7)
Man Pages Copyright Respective Owners. Site Copyright (C) 1994 - 2025
Hurricane Electric.
All Rights Reserved.