tc qdisc add ... stab
           [ mtu BYTES ] [ tsize SLOTS ]
           [ mpu BYTES ] [ overhead BYTES ]
           [ linklayer { adsl | atm | ethernet } ] ...

       For  the  description  of  BYTES - please refer to the UNITS section of

           maximum packet size we create size table for, assumed 2048  if  not
           specified explicitly

           required table size, assumed 512 if not specified explicitly

           minimum packet size used in computations

           per-packet size overhead (can be negative) used in computations

           required linklayer specification.

       Size  tables  allow  manipulation of packet sizes, as seen by the whole
       scheduler framework (of course, the  actual  packet  size  remains  the
       same).  Adjusted  packet  size  is  calculated only once - when a qdisc
       enqueues the packet. Initial root enqueue initializes it  to  the  real
       packet's size.

       Each  qdisc  can  use  a different size table, but the adjusted size is
       stored in an area shared by  whole  qdisc  hierarchy  attached  to  the
       interface.  The effect is that if you have such a setup, the last qdisc
       with a stab in a chain "wins". For example, consider HFSC  with  simple
       pfifo  attached  to  one  of its leaf classes.  If that pfifo qdisc has
       stab  defined,  it  will  override  lengths  calculated  during  HFSC's
       enqueue;  and in turn, whenever HFSC tries to dequeue a packet, it will
       use a potentially invalid size in its calculations. Normal setups  will
       usually include stab defined only on root qdisc, but further overriding
       gives extra flexibility for less usual setups.

       The initial size table is calculated by tc tool  using  mtu  and  tsize
       parameters.  The  algorithm sets each slot's size to the smallest power
       of 2 value, so the whole mtu is covered  by  the  size  table.  Neither
       tsize, nor mtu have to be power of 2 value, so the size table will usu-
       ally support more than is required by mtu.

       For example, with mtu = 1500 and tsize = 128, a table  with  128  slots
       will  be created, where slot 0 will correspond to sizes 0-16, slot 1 to
       17 - 32, ..., slot 127 to 2033 - 2048.  Sizes  assigned  to  each  slot
       depend on linklayer parameter.

           This is basically 1-1 mapping, so following our example from  above
           (disregarding  mpu  for a moment) slot 0 would have 8, slot 1 would
           have 16 and so on, up to slot 127 with 2048. Note,  that  mpu  >  0
           must  be specified, and slots that would get less than specified by
           mpu will get mpu instead. If you don't specify mpu, the size  table
           will  not  be  created  at  all  (it wouldn't make any difference),
           although any overhead value will be respected during calculations.

       atm, adsl
           ATM linklayer consists of 53 byte cells, where each  of  them  pro-
           vides  48  bytes for payload. Also all the cells must be fully uti-
           lized, thus the last one is padded if/as necessary.

           When the size table is calculated, adjusted size that fits properly
           into  lowest  amount of cells is assigned to a slot. For example, a
           100 byte long packet requires three 48-byte payloads, so the  final
           size would require 3 ATM cells - 159 bytes.

           For ATM size tables, 16 bytes sized slots are perfectly enough. The
           default values of mtu and tsize create 4 bytes sized slots.

       The following values are typical for different adsl scenarios (based on
       [1] and [2]):

       LLC based:
           PPPoA - 14 (PPP - 2, ATM - 12)
           PPPoE - 40+ (PPPoE - 8, ATM - 18, ethernet 14, possibly FCS - 4+padding)
           Bridged - 32 (ATM - 18, ethernet 14, possibly FCS - 4+padding)
           IPoA - 16 (ATM - 16)

       VC Mux based:
           PPPoA - 10 (PPP - 2, ATM - 8)
           PPPoE - 32+ (PPPoE - 8, ATM - 10, ethernet 14, possibly FCS - 4+padding)
           Bridged - 24+ (ATM - 10, ethernet 14, possibly FCS - 4+padding)
           IPoA - 8 (ATM - 8)
       There are a few important things regarding the above overheads:

       o   IPoA  in LLC case requires SNAP, instead of LLC-NLPID (see rfc2684)
           - this is the reason why it actually takes more space than PPPoA.

       o   In rare cases, FCS might be preserved  on  protocols  that  include
           Ethernet  frames (Bridged and PPPoE). In such situation, any Ether-
           net specific padding guaranteeing 64 bytes long frame size  has  to
           be  included  as  well  (see RFC2684).  In the other words, it also
           guarantees that any packet you send will take minimum 2 atm  cells.
           You should set mpu accordingly for that.

       o   When  the  size  table is consulted, and you're shaping traffic for
           the sake of another modem/router, an Ethernet header (without  pad-
           ding)  will already be added to initial packet's length. You should
           compensate for that by subtracting 14 from the above  overheads  in

       For slow uplink interfaces, it's  good  to  use  ethtool  to  turn  off
       offloading features.

       tc(8), tc-hfsc(7), tc-hfsc(8),

       Please direct bugreports and patches to: <>

       Manpage created by Michal Soltys (

iproute2                        31 October 2011                        STAB(8)
Man Pages Copyright Respective Owners. Site Copyright (C) 1994 - 2019 Hurricane Electric. All Rights Reserved.