catanhf


SYNOPSIS
       #include <complex.h>

       double complex catanh(double complex z);
       float complex catanhf(float complex z);
       long double complex catanhl(long double complex z);

       Link with -lm.

DESCRIPTION
       The  catanh() function calculates the complex arc hyperbolic tangent of
       z.  If y = catanh(z), then z = ctanh(y).  The imaginary part  of  y  is
       chosen in the interval [-pi/2,pi/2].

       One has:

           catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))

VERSIONS
       These functions first appeared in glibc in version 2.1.

CONFORMING TO
       C99.

EXAMPLE
       /* Link with "-lm" */

       #include <complex.h>
       #include <stdlib.h>
       #include <unistd.h>
       #include <stdio.h>

       int
       main(int argc, char *argv[])
       {
           double complex z, c, f;

           if (argc != 3) {
               fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
               exit(EXIT_FAILURE);
           }

           z = atof(argv[1]) + atof(argv[2]) * I;

           c = catanh(z);
           printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));

           f = 0.5 * (clog(1 + z) - clog(1 - z));
           printf("formula  = %6.3f %6.3f*i\n", creal(f2), cimag(f2));

           exit(EXIT_SUCCESS);
       }
Man Pages Copyright Respective Owners. Site Copyright (C) 1994 - 2017 Hurricane Electric. All Rights Reserved.