cacosf


SYNOPSIS
       #include <complex.h>

       double complex cacos(double complex z);
       float complex cacosf(float complex z);
       long double complex cacosl(long double complex z);

       Link with -lm.

DESCRIPTION
       The  cacos()  function  calculates  the  complex  arc  cosine of z.  If
       y = cacos(z), then z = ccos(y).  The real part of y is  chosen  in  the
       interval [0,pi].

       One has:

           cacos(z) = -i * clog(z + i * csqrt(1 - z * z))

VERSIONS
       These functions first appeared in glibc in version 2.1.

CONFORMING TO
       C99.

EXAMPLE
       /* Link with "-lm" */

       #include <complex.h>
       #include <stdlib.h>
       #include <unistd.h>
       #include <stdio.h>

       int
       main(int argc, char *argv[])
       {
           double complex z, c, f;
           double complex i = I;

           if (argc != 3) {
               fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
               exit(EXIT_FAILURE);
           }

           z = atof(argv[1]) + atof(argv[2]) * I;

           c = cacos(z);

           printf("cacos() = %6.3f %6.3f*i\n", creal(c), cimag(c));

           f = -i * clog(z + i * csqrt(1 - z * z));

           printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));


                                  2011-09-15                          CACOS(3)
Man Pages Copyright Respective Owners. Site Copyright (C) 1994 - 2017 Hurricane Electric. All Rights Reserved.