bigint


SYNOPSIS
         use bigint;

         $x = 2 + 4.5,"\n";                    # BigInt 6
         print 2 ** 512,"\n";                  # really is what you think it is
         print inf + 42,"\n";                  # inf
         print NaN * 7,"\n";                   # NaN
         print hex("0x1234567890123490"),"\n"; # Perl v5.9.4 or later

         {
           no bigint;
           print 2 ** 256,"\n";                # a normal Perl scalar now
         }

         # Note that this will be global:
         use bigint qw/hex oct/;
         print hex("0x1234567890123490"),"\n";
         print oct("01234567890123490"),"\n";

DESCRIPTION
       All operators (including basic math operations) are overloaded. Integer
       constants are created as proper BigInts.

       Floating point constants are truncated to integer. All parts and
       results of expressions are also truncated.

       Unlike integer, this pragma creates integer constants that are only
       limited in their size by the available memory and CPU time.

   use integer vs. use bigint
       There is one small difference between "use integer" and "use bigint":
       the former will not affect assignments to variables and the return
       value of some functions. "bigint" truncates these results to integer
       too:

               # perl -Minteger -wle 'print 3.2'
               3.2
               # perl -Minteger -wle 'print 3.2 + 0'
               3
               # perl -Mbigint -wle 'print 3.2'
               3
               # perl -Mbigint -wle 'print 3.2 + 0'
               3

               # perl -Mbigint -wle 'print exp(1) + 0'
               2
               # perl -Mbigint -wle 'print exp(1)'
               2
               # perl -Minteger -wle 'print exp(1)'
               2.71828182845905
               # perl -Minteger -wle 'print exp(1) + 0'
               2

       the long form.  The following options exist:

       a or accuracy
         This sets the accuracy for all math operations. The argument must be
         greater than or equal to zero. See Math::BigInt's bround() function
         for details.

                 perl -Mbigint=a,2 -le 'print 12345+1'

         Note that setting precision and accuracy at the same time is not
         possible.

       p or precision
         This sets the precision for all math operations. The argument can be
         any integer. Negative values mean a fixed number of digits after the
         dot, and are <B>ignored</B> since all operations happen in integer
         space.  A positive value rounds to this digit left from the dot. 0 or
         1 mean round to integer and are ignore like negative values.

         See Math::BigInt's bfround() function for details.

                 perl -Mbignum=p,5 -le 'print 123456789+123'

         Note that setting precision and accuracy at the same time is not
         possible.

       t or trace
         This enables a trace mode and is primarily for debugging bigint or
         Math::BigInt.

       hex
         Override the built-in hex() method with a version that can handle big
         integers. Note that under Perl v5.9.4 or ealier, this will be global
         and cannot be disabled with "no bigint;".

       oct
         Override the built-in oct() method with a version that can handle big
         integers. Note that under Perl v5.9.4 or ealier, this will be global
         and cannot be disabled with "no bigint;".

       l, lib, try or only
         Load a different math lib, see "Math Library".

                 perl -Mbigint=lib,GMP -e 'print 2 ** 512'
                 perl -Mbigint=try,GMP -e 'print 2 ** 512'
                 perl -Mbigint=only,GMP -e 'print 2 ** 512'

         Currently there is no way to specify more than one library on the
         command line. This means the following does not work:

                 perl -Mbignum=l,GMP,Pari -e 'print 2 ** 512'

         This will be hopefully fixed soon ;)

       You can change this by using:

               use bignum lib => 'GMP';

       The following would first try to find Math::BigInt::Foo, then
       Math::BigInt::Bar, and when this also fails, revert to
       Math::BigInt::Calc:

               use bigint lib => 'Foo,Math::BigInt::Bar';

       Using "lib" warns if none of the specified libraries can be found and
       Math::BigInt did fall back to one of the default libraries.  To
       suppress this warning, use "try" instead:

               use bignum try => 'GMP';

       If you want the code to die instead of falling back, use "only"
       instead:

               use bignum only => 'GMP';

       Please see respective module documentation for further details.

   Internal Format
       The numbers are stored as objects, and their internals might change at
       anytime, especially between math operations. The objects also might
       belong to different classes, like Math::BigInt, or Math::BigInt::Lite.
       Mixing them together, even with normal scalars is not extraordinary,
       but normal and expected.

       You should not depend on the internal format, all accesses must go
       through accessor methods. E.g. looking at $x->{sign} is not a good idea
       since there is no guaranty that the object in question has such a hash
       key, nor is a hash underneath at all.

   Sign
       The sign is either '+', '-', 'NaN', '+inf' or '-inf'.  You can access
       it with the sign() method.

       A sign of 'NaN' is used to represent the result when input arguments
       are not numbers or as a result of 0/0. '+inf' and '-inf' represent plus
       respectively minus infinity. You will get '+inf' when dividing a
       positive number by 0, and '-inf' when dividing any negative number by
       0.

   Methods
       Since all numbers are now objects, you can use all functions that are
       part of the BigInt API. You can only use the bxxx() notation, and not
       the fxxx() notation, though.

       inf()
         A shortcut to return Math::BigInt->binf(). Useful because Perl does
         not always handle bareword "inf" properly.


         Returns PI. Note that under bigint, this is truncated to an integer,
         and hence simple '3'.

       bexp()
                 bexp($power,$accuracy);

         Returns Euler's number "e" raised to the appropriate power, to the
         wanted accuracy.

         Note that under bigint, the result is truncated to an integer.

         Example:

                 # perl -Mbigint=bexp -wle 'print bexp(1,80)'

       bpi()
                 bpi($accuracy);

         Returns PI to the wanted accuracy. Note that under bigint, this is
         truncated to an integer, and hence simple '3'.

         Example:

                 # perl -Mbigint=bpi -wle 'print bpi(80)'

       upgrade()
         Return the class that numbers are upgraded to, is in fact returning
         $Math::BigInt::upgrade.

       in_effect()
                 use bigint;

                 print "in effect\n" if bigint::in_effect;       # true
                 {
                   no bigint;
                   print "in effect\n" if bigint::in_effect;     # false
                 }

         Returns true or false if "bigint" is in effect in the current scope.

         This method only works on Perl v5.9.4 or later.

   MATH LIBRARY
       Math with the numbers is done (by default) by a module called

   Caveat
       But a warning is in order. When using the following to make a copy of a
       number, only a shallow copy will be made.

               $x = 9; $y = $x;
               $x = $y = 7;

       Using the copy or the original with overloaded math is okay, e.g. the
               print $x->binc(1), " ", $y,"\n";        # prints 10 10

               $x = 9; $y = $x;
               print $x->bmul(2), " ", $y,"\n";        # prints 18 18

       Using methods that do not modify, but testthe contents works:

               $x = 9; $y = $x;
               $z = 9 if $x->is_zero();                # works fine

       See the documentation about the copy constructor and "=" in overload,
       as well as the documentation in BigInt for further details.

CAVEATS
       in_effect()
         This method only works on Perl v5.9.4 or later.

       hex()/oct()
         "bigint" overrides these routines with versions that can also handle
         big integer values. Under Perl prior to version v5.9.4, however, this
         will not happen unless you specifically ask for it with the two
         import tags "hex" and "oct" - and then it will be global and cannot
         be disabled inside a scope with "no bigint":

                 use bigint qw/hex oct/;

                 print hex("0x1234567890123456");
                 {
                         no bigint;
                         print hex("0x1234567890123456");
                 }

         The second call to hex() will warn about a non-portable constant.

         Compare this to:

                 use bigint;

                 # will warn only under Perl older than v5.9.4
                 print hex("0x1234567890123456");

MODULES USED
       "bigint" is just a thin wrapper around various modules of the
       Math::BigInt family. Think of it as the head of the family, who runs
       the shop, and orders the others to do the work.

       The following modules are currently used by bigint:

               Math::BigInt::Lite      (for speed, and only if it is loadable)
               Math::BigInt

EXAMPLES
       Some cool command line examples to impress the Python crowd ;) You
       might want to compare them to the results under -Mbignum or -Mbigrat:
       This program is free software; you may redistribute it and/or modify it
       under the same terms as Perl itself.

SEE ALSO
       Especially bigrat as in "perl -Mbigrat -le 'print 1/3+1/4'" and bignum
       as in "perl -Mbignum -le 'print sqrt(2)'".

       Math::BigInt, Math::BigRat and Math::Big as well as
       Math::BigInt::BitVect, Math::BigInt::Pari and  Math::BigInt::GMP.

AUTHORS
       (C) by Tels <http://bloodgate.com/> in early 2002 - 2007.



perl v5.14.2                      2011-09-26                     bigint(3perl)
Man Pages Copyright Respective Owners. Site Copyright (C) 1994 - 2017 Hurricane Electric. All Rights Reserved.