openssl-rsautl
RSAUTL(1SSL) OpenSSL RSAUTL(1SSL)
NAME
openssl-rsautl, rsautl - RSA utility
SYNOPSIS
openssl rsautl [-help] [-in file] [-out file] [-inkey file] [-keyform
PEM|DER|ENGINE] [-pubin] [-certin] [-sign] [-verify] [-encrypt]
[-decrypt] [-rand file...] [-writerand file] [-pkcs] [-ssl] [-raw]
[-hexdump] [-asn1parse]
DESCRIPTION
The rsautl command can be used to sign, verify, encrypt and decrypt
data using the RSA algorithm.
OPTIONS
-help
Print out a usage message.
-in filename
This specifies the input filename to read data from or standard
input if this option is not specified.
-out filename
Specifies the output filename to write to or standard output by
default.
-inkey file
The input key file, by default it should be an RSA private key.
-keyform PEM|DER|ENGINE
The key format PEM, DER or ENGINE.
-pubin
The input file is an RSA public key.
-certin
The input is a certificate containing an RSA public key.
-sign
Sign the input data and output the signed result. This requires an
RSA private key.
-verify
Verify the input data and output the recovered data.
-encrypt
Encrypt the input data using an RSA public key.
-decrypt
Decrypt the input data using an RSA private key.
-rand file...
A file or files containing random data used to seed the random
number generator. Multiple files can be specified separated by an
OS-dependent character. The separator is ; for MS-Windows, , for
OpenVMS, and : for all others.
[-writerand file]
Writes random data to the specified file upon exit. This can be
used with a subsequent -rand flag.
-pkcs, -oaep, -ssl, -raw
The padding to use: PKCS#1 v1.5 (the default), PKCS#1 OAEP, special
padding used in SSL v2 backwards compatible handshakes, or no
padding, respectively. For signatures, only -pkcs and -raw can be
used.
-hexdump
Hex dump the output data.
-asn1parse
Parse the ASN.1 output data, this is useful when combined with the
-verify option.
NOTES
rsautl because it uses the RSA algorithm directly can only be used to
sign or verify small pieces of data.
EXAMPLES
Sign some data using a private key:
openssl rsautl -sign -in file -inkey key.pem -out sig
Recover the signed data
openssl rsautl -verify -in sig -inkey key.pem
Examine the raw signed data:
openssl rsautl -verify -in sig -inkey key.pem -raw -hexdump
0000 - 00 01 ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0010 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0020 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0030 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0040 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0050 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0060 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0070 - ff ff ff ff 00 68 65 6c-6c 6f 20 77 6f 72 6c 64 .....hello world
The PKCS#1 block formatting is evident from this. If this was done
using encrypt and decrypt the block would have been of type 2 (the
second byte) and random padding data visible instead of the 0xff bytes.
It is possible to analyse the signature of certificates using this
utility in conjunction with asn1parse. Consider the self signed example
in certs/pca-cert.pem . Running asn1parse as follows yields:
openssl asn1parse -in pca-cert.pem
0:d=0 hl=4 l= 742 cons: SEQUENCE
4:d=1 hl=4 l= 591 cons: SEQUENCE
8:d=2 hl=2 l= 3 cons: cont [ 0 ]
10:d=3 hl=2 l= 1 prim: INTEGER :02
13:d=2 hl=2 l= 1 prim: INTEGER :00
16:d=2 hl=2 l= 13 cons: SEQUENCE
18:d=3 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
29:d=3 hl=2 l= 0 prim: NULL
31:d=2 hl=2 l= 92 cons: SEQUENCE
33:d=3 hl=2 l= 11 cons: SET
35:d=4 hl=2 l= 9 cons: SEQUENCE
37:d=5 hl=2 l= 3 prim: OBJECT :countryName
42:d=5 hl=2 l= 2 prim: PRINTABLESTRING :AU
....
599:d=1 hl=2 l= 13 cons: SEQUENCE
601:d=2 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
612:d=2 hl=2 l= 0 prim: NULL
614:d=1 hl=3 l= 129 prim: BIT STRING
The final BIT STRING contains the actual signature. It can be extracted
with:
openssl asn1parse -in pca-cert.pem -out sig -noout -strparse 614
The certificate public key can be extracted with:
openssl x509 -in test/testx509.pem -pubkey -noout >pubkey.pem
The signature can be analysed with:
openssl rsautl -in sig -verify -asn1parse -inkey pubkey.pem -pubin
0:d=0 hl=2 l= 32 cons: SEQUENCE
2:d=1 hl=2 l= 12 cons: SEQUENCE
4:d=2 hl=2 l= 8 prim: OBJECT :md5
14:d=2 hl=2 l= 0 prim: NULL
16:d=1 hl=2 l= 16 prim: OCTET STRING
0000 - f3 46 9e aa 1a 4a 73 c9-37 ea 93 00 48 25 08 b5 .F...Js.7...H%..
This is the parsed version of an ASN1 DigestInfo structure. It can be
seen that the digest used was md5. The actual part of the certificate
that was signed can be extracted with:
openssl asn1parse -in pca-cert.pem -out tbs -noout -strparse 4
and its digest computed with:
openssl md5 -c tbs
MD5(tbs)= f3:46:9e:aa:1a:4a:73:c9:37:ea:93:00:48:25:08:b5
which it can be seen agrees with the recovered value above.
SEE ALSO
dgst(1), rsa(1), genrsa(1)
COPYRIGHT
Copyright 2000-2017 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the OpenSSL license (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file LICENSE in the source distribution or at
<https://www.openssl.org/source/license.html>.
1.1.1f 2023-10-10 RSAUTL(1SSL)
Man Pages Copyright Respective Owners. Site Copyright (C) 1994 - 2025
Hurricane Electric.
All Rights Reserved.